4,096 research outputs found

    VLBA Determination of the Distance to Nearby Star-forming Regions. IV. A Preliminary Distance to the Proto-Herbig AeBe Star EC 95 in the Serpens Core

    Get PDF
    Using the Very Long Base Array, we observed the young stellar object EC 95 in the Serpens cloud core at eight epochs from 2007 December to 2009 December. Two sources are detected in our field and are shown to form a tight binary system. The primary (EC 95a) is a 4-5 M_⊙ proto-Herbig AeBe object (arguably the youngest such object known), whereas the secondary (EC 95b) is most likely a low-mass T Tauri star. Interestingly, both sources are non-thermal emitters. While T Tauri stars are expected to power a corona because they are convective while they go down the Hayashi track, intermediate-mass stars approach the main sequence on radiative tracks. Thus, they are not expected to have strong superficial magnetic fields, and should not be magnetically active. We review several mechanisms that could produce the non-thermal emission of EC 95a and argue that the observed properties of EC 95a might be most readily interpreted if it possessed a corona powered by a rotation-driven convective layer. Using our observations, we show that the trigonometric parallax of EC 95 is π = 2.41 ± 0.02 mas, corresponding to a distance of 414.9^(+4.4)_ (–4.3) pc. We argue that this implies a distance to the Serpens core of 415 ± 5 pc and a mean distance to the Serpens cloud of 415 ± 25 pc. This value is significantly larger than previous estimates (d ~ 260 pc) based on measurements of the extinction suffered by stars in the direction of Serpens. A possible explanation for this discrepancy is that these previous observations picked out foreground dust clouds associated with the Aquila Rift system rather than Serpens itself

    VLBA determination of the distance to nearby star-forming regions II. Hubble 4 and HDE 283572 in Taurus

    Full text link
    The non-thermal 3.6 cm radio continuum emission from the naked T Tauri stars Hubble 4 and HDE 283572 in Taurus has been observed with the Very Long Baseline Array (VLBA) at 6 epochs between September 2004 and December 2005 with a typical separation between successive observations of 3 months. Thanks to the remarkably accurate astrometry delivered by the VLBA, the trajectory described by both stars on the plane of the sky could be traced very precisely, and modeled as the superposition of their trigonometric parallax and uniform proper motion. The best fits yield distances to Hubble 4 and HDE 283572 of 132.8 +/- 0.5 and 128.5 +/- 0.6 pc, respectively. Combining these results with the other two existing VLBI distance determinations in Taurus, we estimate the mean distance to the Taurus association to be 137 pc with a dispersion (most probably reflecting the depth of the complex) of about 20 pc.Comment: 21 pages, 4 figues, accepted in ApJ (Dec 20, 2007 issue

    VLBA determination of the distance to nearby star-forming regions I. The distance to T Tauri with 0.4% accuracy

    Full text link
    In this article, we present the results of a series of twelve 3.6-cm radio continuum observations of T Tau Sb, one of the companions of the famous young stellar object T Tauri. The data were collected roughly every two months between September 2003 and July 2005 with the Very Long Baseline Array (VLBA). Thanks to the remarkably accurate astrometry delivered by the VLBA, the absolute position of T Tau Sb could be measured with a precision typically better than about 100 micro-arcseconds at each of the twelve observed epochs. The trajectory of T Tau Sb on the plane of the sky could, therefore, be traced very precisely, and modeled as the superposition of the trigonometric parallax of the source and an accelerated proper motion. The best fit yields a distance to T Tau Sb of 147.6 +/- 0.6 pc. The observed positions of T Tau Sb are in good agreement with recent infrared measurements, but seem to favor a somewhat longer orbital period than that recently reported by Duchene et al. (2006) for the T Tau Sa/T Tau Sb system.Comment: 24 pages, 3 pages, AASTEX format, accepted for publication in Ap

    The Gould's Belt Very Large Array Survey II: The Serpens region

    Get PDF
    We present deep (17 μ\sim 17~\muJy) radio continuum observations of the Serpens molecular cloud, the Serpens south cluster, and the W40 region obtained using the Very Large Array in its A configuration. We detect a total of 146 sources, 29 of which are young stellar objects (YSOs), 2 are BV stars and 5 more are associated with phenomena related to YSOs. Based on their radio variability and spectral index, we propose that about 16 of the remaining 110 unclassified sources are also YSOs. For approximately 65% of the known YSOs detected here as radio sources, the emission is most likely non-thermal, and related to stellar coronal activity. As also recently observed in Ophiuchus, our sample of YSOs with X-ray counterparts lies below the fiducial G\"udel & Benz relation. Finally, we analyze the proper motions of 9 sources in the W40 region. This allows us to better constrain the membership of the radio sources in the region.Comment: Accepted in The Astrophysical Journa

    An astrometric planetary companion candidate to the M9 Dwarf TVLM 513-46546

    Full text link
    Astrometric observations of the M9 dwarf TVLM 513-46546 taken with the VLBA reveal an astrometric signature consistent with a period of 221 ±\pm 5 days. The orbital fit implies that the companion has a mass mp_{p} = 0.35-0.42 MJM_{J}, a circular orbit (e0e \simeq 0), a semi-major axis a = 0.28-0.31 AU and an inclination angle i = 71-88^\circ. The detected companion, TVLM~513bb, is one of the few giant-mass planets found associated to UCDs. The presence of a Saturn-like planet on a circular orbit, 0.3 AU from a 0.06-0.08 MM_\odot star, represents a challenge to planet formation theory. This is the first astrometric detection of a planet at radio wavelengths.Comment: 12 pages, 6 figures, AJ, in pres

    Gaia-DR2 confirms VLBA parallaxes in Ophiuchus, Serpens and Aquila

    Get PDF
    We present Gaia-DR2 astrometry of a sample of YSO candidates in Ophiuchus, Serpens Main and Serpens South/W40 in the Aquila Rift, which had been mainly identified by their infrared excess with Spitzer. We compare the Gaia-DR2 parallaxes against published and new parallaxes obtained from our Very Long Baseline Array (VLBA) program GOBELINS. We obtain consistent results between Gaia and the VLBA for the mean parallaxes in each of the regions analyzed here. We see small offsets, when comparing mean values, of a few tens of micro-arcseconds in the parallaxes, which are either introduced by the Gaia zero-point error or due to a selection effect by Gaia toward the brightest, less obscured stars. Gaia-DR2 data alone conclusively places Serpens Main and Serpens South at the same distance, as we first inferred from VLBA data alone in a previous publication. Thus, Serpens Main, Serpens South and W40 are all part of the same complex of molecular clouds, located at a mean distance of 436+/-9 pc. In Ophiuchus, both Gaia and VLBA suggest a small parallax gradient across the cloud, and the distance changes from 144.2+/-1.3 pc to 138.4+/-2.6 pc when going from L1689 to L1688.Comment: Accepted for publication in ApJ
    corecore