37,992 research outputs found

    Evolution Strategies in Optimization Problems

    Get PDF
    Evolution Strategies are inspired in biology and part of a larger research field known as Evolutionary Algorithms. Those strategies perform a random search in the space of admissible functions, aiming to optimize some given objective function. We show that simple evolution strategies are a useful tool in optimal control, permitting to obtain, in an efficient way, good approximations to the solutions of some recent and challenging optimal control problems.Comment: Partially presented at the 5th Junior European Meeting on "Control and Information Technology" (JEM'06), Sept 20-22, 2006, Tallinn, Estonia. To appear in "Proceedings of the Estonian Academy of Sciences -- Physics Mathematics

    On curves covered by the Hermitian curve

    Full text link
    For each proper divisor d of (r^2-r+1), r being a power of a prime, maximal curves over a finite field with r^2 elements covered by the Hermitian curve of genus 1/2((r^2-r+1)/d-1) are constructed.Comment: 18 pages, Latex2

    Scalar Dark Matter in light of LEP and ILC Experiments

    Get PDF
    In this work we study a scalar field dark matter model with mass of the order of 100 MeV. We assume dark matter is produced in the process e−+e+→ϕ+ϕ∗+γe^-+e^+\to \phi +\phi^*+\gamma, that, in fact, could be a background for the standard process e−+e+→ν+νˉ+γe^-+e^+\to \nu +\bar\nu+\gamma extensively studied at LEP. We constrain the chiral couplings, CLC_L and CRC_R, of the dark matter with electrons through an intermediate fermion of mass mF=100m_F=100 GeV and obtain CL=0.1(0.25)C_L=0.1(0.25) and CR=0.25(0.1)C_R=0.25(0.1) for the best fit point of our χ2\chi^2 analysis. We also analyze the potential of ILC to detect this scalar dark matter for two configurations: (i) center of mass energy s=500\sqrt{s}=500 GeV and luminosity L=250\mathcal{L}=250 fb−1^{-1}, and (ii) center of mass energy s=1\sqrt{s}=1 TeV and luminosity L=500\mathcal{L}=500 fb−1^{-1}. The differences of polarized beams are also explored to better study the chiral couplings.Comment: 15 pages, 6 figures and 1 table. New references added and improvements in the text. Conclusions unchange

    A propeller scenario for the gamma-ray emission of low-mass X-ray binaries: The case of XSS J12270-4859

    Full text link
    XSS J12270-4859 is the only low mass X-ray binary (LMXB) with a proposed persistent gamma-ray counterpart in the Fermi-LAT domain, 2FGL 1227.7-4853. Here, we present the results of the analysis of recent INTEGRAL observations, aimed at assessing the long-term variability of the hard X-ray emission, and thus the stability of the accretion state. We confirm that the source behaves as a persistent hard X-ray emitter between 2003 and 2012. We propose that XSS J12270-4859 hosts a neutron star in a propeller state, a state we investigate in detail, developing a theoretical model to reproduce the associated X-ray and gamma-ray properties. This model can be understood as being of a more general nature, representing a viable alternative by which LMXBs can appear as gamma-ray sources. In particular, this may apply to the case of millisecond pulsars performing a transition from a state powered by the rotation of their magnetic field, to a state powered by matter in-fall, such as that recently observed from the transitional pulsar PSR J1023+0038. While the surface magnetic field of a typical NS in a LMXB is lower by more than four orders of magnitude than the much more intense fields of neutron stars accompanying high-mass binaries, the radius at which the matter in-flow is truncated in a NS-LMXB system is much lower. The magnetic field at the magnetospheric interface is then orders of magnitude larger at this interface, and as consequence, so is the power to accelerate electrons. We demonstrate that the cooling of the accelerated electron population takes place mainly through synchrotron interaction with the magnetic field permeating the interface, and through inverse Compton losses due to the interaction between the electrons and the synchrotron photons they emit. We found that self-synchrotron Compton processes can explain the high energy phenomenology of XSS J12270-4859.Comment: 12 pages, 3 figures, accepted for publication in MNRAS. References update

    Local continuity laws on the phase space of Einstein equations with sources

    Full text link
    Local continuity equations involving background fields and variantions of the fields, are obtained for a restricted class of solutions of the Einstein-Maxwell and Einstein-Weyl theories using a new approach based on the concept of the adjoint of a differential operator. Such covariant conservation laws are generated by means of decoupled equations and their adjoints in such a way that the corresponding covariantly conserved currents possess some gauge-invariant properties and are expressed in terms of Debye potentials. These continuity laws lead to both a covariant description of bilinear forms on the phase space and the existence of conserved quantities. Differences and similarities with other approaches and extensions of our results are discussed.Comment: LaTeX, 13 page
    • …
    corecore