5 research outputs found

    Mutations Associated with Acquired Resistance to PD-1 Blockade in Melanoma

    Full text link
    BACKGROUND: Approximately 75% of objective responses to anti–programmed death 1 (PD-1) therapy in patients with melanoma are durable, lasting for years, but delayed relapses have been noted long after initial objective tumor regression despite continuous therapy. Mechanisms of immune escape in this context are unknown. METHODS: We analyzed biopsy samples from paired baseline and relapsing lesions in four patients with metastatic melanoma who had had an initial objective tumor regression in response to anti–PD-1 therapy (pembrolizumab) followed by disease progression months to years later. RESULTS: Whole-exome sequencing detected clonal selection and outgrowth of the acquired resistant tumors and, in two of the four patients, revealed resistance-associated loss-of-function mutations in the genes encoding interferon-receptor–associated Janus kinase 1 (JAK1) or Janus kinase 2 (JAK2), concurrent with deletion of the wild-type allele. A truncating mutation in the gene encoding the antigen-presenting protein beta-2-microglobulin (B2M) was identified in a third patient. JAK1 and JAK2 truncating mutations resulted in a lack of response to interferon gamma, including insensitivity to its antiproliferative effects on cancer cells. The B2M truncating mutation led to loss of surface expression of major histocompatibility complex class I. CONCLUSIONS: In this study, acquired resistance to PD-1 blockade immunotherapy in patients with melanoma was associated with defects in the pathways involved in interferon-receptor signaling and in antigen presentation. (Funded by the National Institutes of Health and others.

    Mutations Associated with Acquired Resistance to PD-1 Blockade in Melanoma.

    No full text
    BackgroundApproximately 75% of objective responses to anti-programmed death 1 (PD-1) therapy in patients with melanoma are durable, lasting for years, but delayed relapses have been noted long after initial objective tumor regression despite continuous therapy. Mechanisms of immune escape in this context are unknown.MethodsWe analyzed biopsy samples from paired baseline and relapsing lesions in four patients with metastatic melanoma who had had an initial objective tumor regression in response to anti-PD-1 therapy (pembrolizumab) followed by disease progression months to years later.ResultsWhole-exome sequencing detected clonal selection and outgrowth of the acquired resistant tumors and, in two of the four patients, revealed resistance-associated loss-of-function mutations in the genes encoding interferon-receptor-associated Janus kinase 1 (JAK1) or Janus kinase 2 (JAK2), concurrent with deletion of the wild-type allele. A truncating mutation in the gene encoding the antigen-presenting protein beta-2-microglobulin (B2M) was identified in a third patient. JAK1 and JAK2 truncating mutations resulted in a lack of response to interferon gamma, including insensitivity to its antiproliferative effects on cancer cells. The B2M truncating mutation led to loss of surface expression of major histocompatibility complex class I.ConclusionsIn this study, acquired resistance to PD-1 blockade immunotherapy in patients with melanoma was associated with defects in the pathways involved in interferon-receptor signaling and in antigen presentation. (Funded by the National Institutes of Health and others.)

    Limitation of life support techniques at admission to the intensive care unit: a multicenter prospective cohort study

    Get PDF
    Purpose: To determine the frequency of limitations on life support techniques (LLSTs) on admission to intensive care units (ICU), factors associated, and 30-day survival in patients with LLST on ICU admission. Methods: This prospective observational study included all patients admitted to 39 ICUs in a 45-day period in 2011. We recorded hospitals’ characteristics (availability of intermediate care units, usual availability of ICU beds, and financial model) and patients’ characteristics (demographics, reason for admission, functional status, risk of death, and LLST on ICU admission (withholding/withdrawing; specific techniques affected)). The primary outcome was 30-day survival for patients with LLST on ICU admission. Statistical analysis included multilevel logistic regression models. Results: We recruited 3042 patients (age 62.5 ± 16.1 years). Most ICUs (94.8%) admitted patients with LLST, but only 238 (7.8% [95% CI 7.0–8.8]) patients had LLST on ICU admission; this group had higher ICU mortality (44.5 vs. 9.4% in patients without LLST; p < 0.001). Multilevel logistic regression showed a contextual effect of the hospital in LLST on ICU admission (median OR = 2.30 [95% CI 1.59–2.96]) and identified the following patient-related variables as independent factors associated with LLST on ICU admission: age, reason for admission, risk of death, and functional status. In patients with LLST on ICU admission, 30-day survival was 38% (95% CI 31.7–44.5). Factors associated with survival were age, reason for admission, risk of death, and number of reasons for LLST on ICU admission. Conclusions: The frequency of ICU admission with LLST is low but probably increasing; nearly one third of these patients survive for ≥ 30 days

    Conserved interferon-g signaling drives clinical response to immune checkpoint blockade therapy in melanoma

    No full text
    We analyze the transcriptome of baseline and on-therapy tumor biopsies from 101 patients with advanced melanoma treated with nivolumab (anti-PD-1) alone or combined with ipilimumab (anti-CTLA-4). We find that T cell infiltration and interferon-γ (IFN-γ) signaling signatures correspond most highly with clinical response to therapy, with a reciprocal decrease in cell-cycle and WNT signaling pathways in responding biopsies. We model the interaction in 58 human cell lines, where IFN-γ in vitro exposure leads to a conserved transcriptome response unless cells have IFN-γ receptor alterations. This conserved IFN-γ transcriptome response in melanoma cells serves to amplify the antitumor immune response. Therefore, the magnitude of the antitumor T cell response and the corresponding downstream IFN-γ signaling are the main drivers of clinical response or resistance to immune checkpoint blockade therapy
    corecore