23 research outputs found

    Efficient synchronization of structurally adaptive coupled Hindmarsh-Rose neurons

    Full text link
    The use of spikes to carry information between brain areas implies complete or partial synchronization of the neurons involved. The degree of synchronization reached by two coupled systems and the energy cost of maintaining their synchronized behaviour is highly dependent on the nature of the systems. For non-identical systems the maintenance of a synchronized regime is energetically a costly process. In this work, we study conditions under which two non-identical electrically coupled neurons can reach an efficient regime of synchronization at low energy cost. We show that the energy consumption required to keep the synchronized regime can be spontaneously reduced if the receiving neuron has adaptive mechanisms able to bring its biological parameters closer in value to the corresponding ones in the sending neuron

    Investigation of brain tumour metabolism using naturally occurring chemical exchange saturation transfer agents with magnetic resonance imaging

    Get PDF
    This thesis presents a thorough study on the newly developed glucoCEST magnetic resonance imaging (MRI) technique and its application for the assessment of malignant brain tumours. The key asset of glucoCEST is that it allows the detection of small concentration of glucose with standard MRI scanners and has the potential to provide a novel imaging tool to investigate diseases in which glucose metabolism is affected, in particular cancer. The physical principles and the rationale behind the glucoCEST technique are described in detail and factors influencing the measurements (both physiological and hardware related) are analysed using computer simulations and evaluated with in vitro experiments. Special attention is given to the analysis of the first four sugars along the glycolytic pathway i.e. glucose, glucose 6-phosphate, fructose 6-phosphate and fructose 1,6-biphosphate as contributors to the overall observed signal. The results of this analysis give grounds for the argument of the intracellular origin of the glucoCEST signal, which opens the possibility of characterising tumours based on their metabolism with MRI. A preclinical glucoCEST study on mice bearing human xenograft glioblastoma is also presented in which cancers with diverse phenotype are scanned longitudinally throughout the different stages of tumour development. While not conclusive, the results suggest that the glucoCEST technique is able to identify the presence of cancer at an earlier stage than standard MRI methods

    Melatonin and/or erythropoietin combined with hypothermia in a piglet model of perinatal asphyxia

    Get PDF
    AAs therapeutic hypothermia is only partially protective for neonatal encephalopathy, safe and effective adjunct therapies are urgently needed. Melatonin and erythropoietin show promise as safe and effective neuroprotective therapies. We hypothesized that melatonin and erythropoietin individually augment 12-h hypothermia (double therapies) and hypothermia + melatonin + erythropoietin (triple therapy) leads to optimal brain protection. Following carotid artery occlusion and hypoxia, 49 male piglets (<48 h old) were randomized to: (i) hypothermia + vehicle (n = 12), (ii) hypothermia + melatonin (20 mg/kg over 2 h) (n = 12), (iii) hypothermia + erythropoietin (3000 U/kg bolus) (n = 13) or (iv) tripletherapy (n = 12). Melatonin, erythropoietin or vehicle were given at 1, 24 and 48 h after hypoxia–ischaemia. Hypoxia–ischaemia severity was similar across groups. Therapeutic levels were achieved 3 hours after hypoxia–ischaemia for melatonin (15–30 mg/l) and within 30 min of erythropoietin administration (maximum concentration 10 000 mU/ml). Compared to hypothermia + vehicle, we observed faster amplitude-integrated EEG recovery from 25 to 30 h with hypothermia + melatonin (P = 0.02) and hypothermia + erythropoietin (P = 0.033) and from 55 to 60 h with tripletherapy (P = 0.042). Magnetic resonance spectroscopy lactate/N-acetyl aspartate peak ratio was lower at 66 h in hypothermia + melatonin (P = 0.012) and tripletherapy (P = 0.032). With hypothermia + melatonin, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labelled-positive cells were reduced in sensorimotor cortex (P = 0.017) and oligodendrocyte transcription factor 2 labelled-positive counts increased in hippocampus (P = 0.014) and periventricular white matter (P = 0.039). There was no reduction in terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labelled-positive cells with hypothermia + erythropoietin, but increased oligodendrocyte transcription factor 2 labelled-positive cells in 5 of 8 brain regions (P < 0.05). Overall, melatonin and erythropoietin were safe and effective adjunct therapies to hypothermia. Hypothermia + melatonin double therapy led to faster amplitude-integrated EEG recovery, amelioration of lactate/N-acetyl aspartate rise and reduction in terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labelled-positive cells in the sensorimotor cortex. Hypothermia + erythropoietin doubletherapy was in association with EEG recovery and was most effective in promoting oligodendrocyte survival. Tripletherapy provided no added benefit over the double therapies in this 72-h study. Melatonin and erythropoietin influenced cell death and oligodendrocyte survival differently, reflecting distinct neuroprotective mechanisms which may become more visible with longer-term studies. Staggering the administration of therapies with early melatonin and later erythropoietin (after hypothermia) may provide better protection; each therapy has complementary actions which may be time critical during the neurotoxic cascade after hypoxia–ischaemia

    CEST MRI provides amide/amine surrogate biomarkers for treatment-naïve glioma sub-typing

    Get PDF
    PURPOSE: Accurate glioma classification affects patient management and is challenging on non- or low-enhancing gliomas. This study investigated the clinical value of different chemical exchange saturation transfer (CEST) metrics for glioma classification and assessed the diagnostic effect of the presence of abundant fluid in glioma subpopulations. METHODS: Forty-five treatment-naïve glioma patients with known isocitrate dehydrogenase (IDH) mutation and 1p/19q codeletion status received CEST MRI (B1rms = 2μT, Tsat = 3.5 s) at 3 T. Magnetization transfer ratio asymmetry and CEST metrics (amides: offset range 3-4 ppm, amines: 1.5-2.5 ppm, amide/amine ratio) were calculated with two models: 'asymmetry-based' (AB) and 'fluid-suppressed' (FS). The presence of T2/FLAIR mismatch was noted. RESULTS: IDH-wild type had higher amide/amine ratio than IDH-mutant_1p/19qcodel (p < 0.022). Amide/amine ratio and amine levels differentiated IDH-wild type from IDH-mutant (p < 0.0045) and from IDH-mutant_1p/19qret (p < 0.021). IDH-mutant_1p/19qret had higher amides and amines than IDH-mutant_1p/19qcodel (p < 0.035). IDH-mutant_1p/19qret with AB/FS mismatch had higher amines than IDH-mutant_1p/19qret without AB/FS mismatch ( < 0.016). In IDH-mutant_1p/19qret, the presence of AB/FS mismatch was closely related to the presence of T2/FLAIR mismatch (p = 0.014). CONCLUSIONS: CEST-derived biomarkers for amides, amines, and their ratio can help with histomolecular staging in gliomas without intense contrast enhancement. T2/FLAIR mismatch is reflected in the presence of AB/FS CEST mismatch. The AB/FS CEST mismatch identifies glioma subgroups that may have prognostic and clinical relevance

    Optimization and Repeatability of Multipool Chemical Exchange Saturation Transfer MRI of the Prostate at 3.0 T

    Get PDF
    BACKGROUND: Chemical exchange saturation transfer (CEST) can potentially support cancer imaging with metabolically derived information. Multiparametric prostate MRI has improved diagnosis but may benefit from additional information to reduce the need for biopsies. PURPOSE: To optimize an acquisition and postprocessing protocol for 3.0 T multipool CEST analysis of prostate data and evaluate the repeatability of the technique. STUDY TYPE: Prospective. SUBJECTS: Five healthy volunteers (age range: 24-47 years; median age: 28 years) underwent two sessions (interval range: 7-27 days; median interval: 20 days) and two biopsy-proven prostate cancer patients were evaluated once. Patient 1 (71 years) had a Gleason 3 + 4 transition zone (TZ) tumor and patient 2 (55 years) had a Gleason 4 + 3 peripheral zone (PZ) tumor. FIELD STRENGTH: 3.0 T. Sequences run: T2 -weighted turbo-spin-echo (TSE); diffusion-weighted imaging; CEST; WASABI (for B0 determination). ASSESSMENT: Saturation, readout, and fit-model parameters were optimized to maximize in vivo amide and nuclear Overhauser effect (NOE) signals. Repeatability (intrasession and intersession) was evaluated in healthy volunteers. Subsequently, preliminary evaluation of signal differences was made in patients. Regions of interest were drawn by two post-FRCR board-certified readers, both with over 5 years of experience in multiparametric prostate MRI. STATISTICAL TESTS: Repeatability was assessed using Bland-Altman analysis, coefficient of variation (CV), and 95% limits of agreement (LOA). Statistical significance of CEST contrast was calculated using a nonparametric Mann-Whitney U-test. RESULTS: The optimized saturation scheme was found to be 60 sinc-Gaussian pulses with 40 msec pulse duration, at 50% duty-cycle with continuous-wave pulse equivalent B1 power (B1CWPE ) of 0.92 μT. The magnetization transfer (MT) contribution to the fit-model was centered at -1.27 ppm. Intersession coefficients of variation (CVs) of the amide, NOE, and magnetization transfer (MT) and asymmetric magnetization transfer ratio (MTRasym ) signals of 25%, 23%, 18%, and 200%, respectively, were observed. Fit-metric and MTRasym CVs agreed between readers to within 4 and 10 percentage points, respectively. DATA CONCLUSION: Signal differences of 0.03-0.10 (17-43%) detectable depending upon pool, with MT the most repeatable (signal difference of 17-22% detectable). LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019

    APT-CEST post Gadolinium. Should it be avoided? Comparison of pre- & post- Gadolinium CEST on glioma at 3T

    Get PDF
    This study compares APT-CEST between pre- and post-gadolinium in patients with gliomas at 3T, and evaluates the feasibility of performing CEST after administration of T1 contrast. The results of the study demonstrate that Gd administration does not significantly affect the quality of the APT-CEST image, encouraging the acquisition of CEST data, even after the administration of T1 contrast agents

    In vivo imaging of tau pathology using multi-parametric quantitative MRI

    Get PDF
    As the number of people diagnosed with Alzheimer's disease (AD) reaches epidemic proportions, there is an urgent need to develop effective treatment strategies to tackle the social and economic costs of this fatal condition. Dozens of candidate therapeutics are currently being tested in clinical trials, and compounds targeting the aberrant accumulation of tau proteins into neurofibrillary tangles (NFTs) are the focus of substantial current interest. Reliable, translatable biomarkers sensitive to both tau pathology and its modulation by treatment along with animal models that faithfully reflect aspects of the human disease are urgently required. Magnetic resonance imaging (MRI) is well established as a valuable tool for monitoring the structural brain changes that accompany AD progression. However the descent into dementia is not defined by macroscopic brain matter loss alone: non-invasive imaging measurements sensitive to protein accumulation, white matter integrity and cerebral haemodynamics probe distinct aspects of AD pathophysiology and may serve as superior biomarkers for assessing drug efficacy. Here we employ a multi-parametric array of five translatable MRI techniques to characterise the in vivo pathophysiological phenotype of the rTg4510 mouse model of tauopathy (structural imaging, diffusion tensor imaging (DTI), arterial spin labelling (ASL), chemical exchange saturation transfer (CEST) and glucose CEST). Tau-induced pathological changes included grey matter atrophy, increased radial diffusivity in the white matter, decreased amide proton transfer and hyperperfusion. We demonstrate that the above markers unambiguously discriminate between the transgenic group and age-matched controls and provide a comprehensive profile of the multifaceted neuropathological processes underlying the rTg4510 model. Furthermore, we show that ASL and DTI techniques offer heightened sensitivity to processes believed to precede detectable structural changes and, as such, provides a platform for the study of disease mechanisms and therapeutic intervention
    corecore