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Optimization and Repeatability of
Multipool Chemical Exchange Saturation
Transfer MRI of the Prostate at 3.0 T

Vincent Stephen Evans, I\/IPhys,H Francisco Torrealdea, PhD," Marilena Rega, PhD,?
Mrishta Brizmohun Appayya, MD," Arash Latifoltojar, MD," Harbir Sidhu, MD, FRCR,"3
Mina Kim, PhD,* Aaron Kujawa, MS,* Shonit Punwani, PhD, FRCR," Xavier Golay, PhD,* and
David Atkinson, PhD'

Background: Chemical exchange saturation transfer (CEST) can potentially support cancer imaging with metabolically
derived information. Multiparametric prostate MRI has improved diagnosis but may benefit from additional information to
reduce the need for biopsies.
Purpose: To optimize an acquisition and postprocessing protocol for 3.0 T multipool CEST analysis of prostate data and
evaluate the repeatability of the technique.
Study Type: Prospective.
Subjects: Five healthy volunteers (age range: 24-47 years; median age: 28 years) underwent two sessions (interval range:
7-27 days; median interval: 20 days) and two biopsy-proven prostate cancer patients were evaluated once. Patient 1 (71 years)
had a Gleason 3 + 4 transition zone (TZ) tumor and patient 2 (55 years) had a Gleason 4 + 3 peripheral zone (PZ) tumor.
Field Strength: 3.0 T. Sequences run: To-weighted turbo-spin-echo (TSE); diffusion-weighted imaging; CEST; WASABI (for By
determination).
Assessment: Saturation, readout, and fit-model parameters were optimized to maximize in vivo amide and nuclear Overhauser
effect (NOE) signals. Repeatability (intrasession and intersession) was evaluated in healthy volunteers. Subsequently, preliminary
evaluation of signal differences was made in patients. Regions of interest were drawn by two post-FRCR board-certified readers,
both with over 5 years of experience in multiparametric prostate MRI.
Statistical Tests: Repeatability was assessed using Bland-Altman analysis, coefficient of variation (CV), and 95% limits of agree-
ment (LOA). Statistical significance of CEST contrast was calculated using a nonparametric Mann-Whitney U-test.
Results: The optimized saturation scheme was found to be 60 sinc-Gaussian pulses with 40 msec pulse duration, at 50% duty-
cycle with continuous-wave pulse equivalent B1 power (B1cwpg) of 0.92 pT. The magnetization transfer (MT) contribution to the
fit-model was centered at -1.27 ppm. Intersession coefficients of variation (CVs) of the amide, NOE, and magnetization transfer
(MT) and asymmetric magnetization transfer ratio (MTR,sm) signals of 25%, 23%, 18%, and 200%, respectively, were observed.
Fit-metric and MTR,s,m CVs agreed between readers to within 4 and 10 percentage points, respectively.
Data Conclusion: Signal differences of 0.03-0.10 (17-43%) detectable depending upon pool, with MT the most repeat-
able (signal difference of 17-22% detectable).
Level of Evidence: 2
Technical Efficacy: Stage 2
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HEMICAL EXCHANGE SATURATION TRANSFER  water. The technique has been applied in cancer imaging
(CEST) imaging allows for the detection of in vivo at clinical field strengths across a range of anatomical
metabolites via the continual exchange of labile protons with  regions including brain,"? breast,” head and neck,®’ and
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prostate®” with sequences performed in clinically feasible
scan times.

A key diagnostic tool in prostate cancer detection and
treatment pipeline is the use of multiparametric magnetic res-
onance imaging (mp-MRI) protocols and radiologist scoring
schemas, which are becoming increasingly harmonized across
sites as radiological consensus continues to emerge.' "'

While mp-MRI has been shown to improve detection
of clinically significant prostate cancer'? approximately a third
of cases remain equivocal.'>'* In these cases, there would be
a clear clinical benefit if additional information could be pro-
vided by imaging to support diagnosis and reduce the need
for biopsies.

CEST imaging is sensitive to changes in the concentra-
tions and the pH environment of exchangeable protons found
in metabolites such as lactate, citrate, and other mobile pro-
teins and peptides that exhibit altered behavior as part of
metabolomic changes that occur in prostate cancer."” Jia
et al® demonstrated that amide proton transfer ratio (APTR)
measurements in regions of prostate cancer were significantly
higher than in benign peripheral zone (PZ) regions, while
Takayama et al’ analyzed CEST data from 66 prostate
tumors that suggested that amide proton transfer (APT) mea-
surements of Gleason 7 lesions are higher than for Gleason
6, 8, and 9 lesions and for noncancerous PZ tissue. Lorent-
zian fitting of CEST z-spectra gives the ability to derive infor-
mation from several different exchange effects that would
otherwise be convolved into a single asymmetry measurement
and, to the best of our knowledge, has not previously been
explored in the prostate at 3.0 T.

In order for the clinical potential of the technique to be
explored fully, an optimization of the acquisition and analysis,
and evaluation of the repeatability of the results, is needed.

The present work has two primary objectives. The first
is to optimize an acquisition and postprocessing protocol suit-
able for z-spectrum fitting analysis of prostate data acquired
at 3.0 T with clinically feasible scan times. The second is to
evaluate the intra- and intersession repeatability of both the
fitting and asymmetry metrics derived from the optimized
protocol. It is hypothesized that the repeatability scores of the
CEST fitting metrics will outperform those from asymmetry
analysis.

Materials and Methods
Subjects

The recruitment of healthy volunteers and patients was approved by
the local Institutional Ethics Board. Written informed consent was
obtained prior to all examinations.

Five healthy male volunteers (age range 24-47 years; median
age: 28 years) were recruited. Two of these volunteers were initially
scanned as part of the sequence and postprocessing optimization
steps described below. All five healthy volunteers then attended two
separate scanning sessions (range of interscan intervals: 7-27 days;
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median interval: 20 days) where data for the repeatability analysis
was collected.

Patients were identified by a radiologist with 10 years of experi-
ence (coauthor S.P.) during local multidisciplinary team meetings. Two
patients with transrectal ultrasound (TRUS) biopsy-proven tumors,
both of whom were under active surveillance for lesions scoring 5/5 on
PI-RADS, with maximum lesion size >10 mm and whose biopsies had
taken place over 4 months prior to recruitment were recruited and made
a single attendance. Patient 1 (age 71) had a right-sided Gleason 3 + 4
TZ tumor with prostate-specific antigen (PSA) concentration of
8.4 ng/ml and patient 2 (age 55) had a right-sided Gleason 4 + 3 PZ
tumor with PSA concentration of 6.2 ng/ml. PSA measurements were
made 2 months prior to the research scans.

MRI Protocol

Data were acquired with a 3.0 T Achieva MRI scanner (Philips Health-
care, Best, The Netherlands) using a 32-channel cardiac coil. All volun-
teer and patient scans were performed axially in the feet-first position. A
T,-weighted (T,w) whole-volume turbo-spin-echo (TSE) acquisition
and, in patients, a diffusion-weighted imaging (DWI) acquisition was
performed at the start of the session. These were then used to plan the
CEST scan. In patients, both of which had known and previously classi-
fied tumors, prior mp-MRI was also available to support the radiologists
when planning. In healthy volunteers, a single-slice was positioned at the
largest axial cross-section of the prostate. In patients, the slice was posi-
tioned at the largest axial cross-section of the tumor as determined by
radiology research fellows (A.L. and H.S.) with access to prior clinical
imaging. The shim voxel was aligned with the imaging plane.

The T,w scan was an axial multishot TSE (TSE factor = 16).
Echo time (TE) = 100 msec, repetition time (TR) = 4000 msec, field-
of-view (FOV) = 180 X 180 mm?, resolution = 224 X 218 with
30, 3-mm thick slices. Refocusing control and fat suppression were off. A
parallel imaging acceleration (SENSE) factor of 1.3 (RL) was used. The
number of signal averages (NSA) was 1. Scan duration was 3 minutes
27 seconds.

The DWI scan used an axial multislice Cartesian single-shot
echo planar imaging (EPI) readout. TE = 79 msec, TR = 2360 msec,
FOV = 220 X 220 mm?, resolution = 168 X 168 with 14, 5-mm
slices. NSA = 6. Images were acquired using a single b-factor of 2000.
Spectral presaturation with inversion recovery (SPIR) fat suppression
was applied. Scan duration was 2 minutes 10 seconds.

The CEST scan readout was an axial single-shot TSE readout.
TE = 14 msec, TR = 5100 msec, FOV = 140 X 140 mm?, resolu-
tion = 64 X 63 with a single slice thickness 4 mm. Refocusing con-
trol was set to 120° and SPIR fat suppression was applied. No
parallel imaging acceleration was used. NSA = 1. The scan duration
was 5 minutes 42 seconds.

Offset Sampling Frequencies

Saturated images were acquired with 0.25 ppm spacing between £5
ppm, with additional measurements at £5.5, £6.0, £6.5, £7.0,
+7.5, £10.0, £15.0, £20.0, £25.0, £30.0, £100.0, and £ 300.0
ppm allowing for sampling of the broad semisolid MT contribu-
tion. An unsaturated reference image was acquired for z-spectrum

normalization.



WASABI

By maps were acquired using a WASABI (water shift and B;) sequence
that was adapted from parameters outlined in the literature.'® Data were
acquired at 20 saturation frequency offsets, evenly spaced between £3
ppm. A 5-msec block saturation pulse of flip angle 284° (B;cwrk = 3.7
uT) was applied before each readout. The readout parameters and slice-
planning were the same as for the CEST scan. The duration of each
WASABI scan was 41 seconds.

Data Analysis
Data processing was performed using in-house developed software
written using MatLab (MathWorks, Natick, MA, R2016a).

By inhomogeneity corrections were carried out by interpolating
the CEST z-spectra to 1 Hz (0.008 ppm) frequency intervals and
shifting the spectra on a voxel-by-voxel basis using By maps generated

using WASABI data.

LORENTZIAN FITTING. The direct saturation (DS), CEST,
and nuclear Overhauser effece (NOE)!~1° pools were mod-
eled using Lorentzian lineshapes,”*™>* described as a function
of the saturation frequency, ® by:

1 T,
27 (w-wo;)* + (0.5T;)

L,’(Cl))wOisri:Ai) =A;

(1)

Where ®,; is the offset frequency of pool 7, I'7 is the
full-width-half-maximum (FWHM), and A; is a scaling
factor.

The CEST effects were jointly modeled using a single
Lorentzian to mitigate the risks of overfitting. This Lorent-
zian was centered at the APT frequency offset of 3.5 ppm
and is henceforth referred to as the amide pool. Similarly, a
single Lorentzian, located at —3.5 ppm, was used to account
for the NOE effect.*>*

The MT contribution to the z-spectrum was modeled
using a super-Lorentzian curve,”""**?> which is described by:

SL(w,wost, T Ast) = Asy, | dOsindy |2 "\ ool
(a) WosL> £, 3L) 3LJ0 o 7r|3m.c29—1|€

2)

where sz is the T, of the MT pool, mgg; is the central offset
frequency of the lineshape relative to water, and Ag; is a scal-
ing factor.

The offset frequency of the MT contribution to the
z-spectrum has been seen to vary across tissues.”>***” This
issue is discussed by van Zijl et al*® and Hua et al*® and is
likely due to a combination of causes including differences in
the constituents of the macromolecular pool across tissues,
which is thought to contain both slow- and fast-exchanging
contributors. The MT offset frequency was estimated by fit-
ting the z-spectra from many voxels using only data points

outside of the £15 ppm range, where CEST and NOE
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contributions are negligible. The median offset from this
analysis was used for all subsequent fits and the super-
Lorentzian lineshape was symmetrically interpolated between
+20 ppm using a cubic-spline to remove the pole that occurs
close to its central frequency.

A whole-fit frequency offset term, 4, was included in
the fit equation to account for imperfect By-field inhomoge-
neity corrections and a vertical constant signal term v was also
included to account for the effects of noise during z-spectrum
normalization. After fitting, both the normalized data points
and the amplitude parameters extracted from the fit were
renormalized using the fitted vertical offset value (using a vox-
elwise multiplication by 1/(1-v)). This ensured that the data
and fit results were properly normalized.

The general overall fit equation for a renormalized z-
spectrum with contributions from # pools (including DS,

CEST, and NOE effects) and an MT pool is given by:

Mz(w> =1- ZLi(w_/?: wOi)FixAi) —SL(C{)—h, @WoSL» szsASL)
i=1
(3)

Fitting analyses were performed using a nonlinear least
squares algorithm and the fit expression described in Eq. 3
customized for a four-pool model (DS, amide, NOE, MT),
with all data points weighted equally. The primary output
metrics of interest from the fitting were taken to be the

heights of the amide, NOE, and MT peaks.

ASYMMETRY ANALYSIS. The asymmetric magnetization
transfer ratio (MTR ) at offset frequency o is calculated by

the expression MTR (@) = M(Co)=M(©) Fop this analysis,

the MTR g, was calculated at @ = 3.5 ppm as per previous
prostate APT work.®’

Saturation Scheme and TR Optimization

A pulsed-saturation scheme was used, comprised of a train of sinc-
Gaussian shaped pulses with parameters: pulse duration (t}),
interpulse-delay (tg), saturation flip angle (0), and the number of
pulses (V). Z-spectra were acquired in a healthy volunteer using a
range of values of NV (20 to 60) to determine the number of pulses
required to achieve saturation steady-state.

The saturation flip angle was subsequently optimized by
acquiring data from a second healthy volunteer using a range of
values of saturation flip angle 0 and selecting the flip angle that max-
imized the signal from the fitted amide and NOE pools obtained
using the four-pool model described by equation 3.

A range of TR values between 2 and 6 seconds were explored
by acquiring unsaturated images repeatedly in a healthy volunteer
and comparing the total absolute signal observed in each case. These
results were cross-referenced with values quoted in the literature for
the T of the prostate at 3.0 T?° and a selection was made to allow
for >95% signal recovery between TSE readouts.
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Region of Interest Analysis

Regions of interest (ROIs) were drawn in a single-session by coauthor
H.S., with 10 years of experience in prostate radiology, on unsatu-
rated CEST reference scans from all healthy volunteer and patient
scans. This was done with a graphical user interface (GUI) that was
created using an in-house developed MatLab script. For healthy vol-
unteers, ROIs were drawn in the right and left PZ, right and left TZ,
and right and left obturator internus muscles. In patients, the same
ROIs were drawn, however in the affected zone (TZ or PZ) one ROI
was drawn in the tumor and one in apparently-uninvolved-tissue
(AUT), ie, not necessarily contralaterally.

Readers had access to prior clinical mp-MRI reports and pathol-
ogy results and the T,w and DWT images acquired during this study.
This was to ensure that the tumor was localized in the acquired
images as accurately as possible by both readers to allow for subse-
quent evaluation of the signal differences between different regions.

A second reader (coauthor M.B.A.) with 5 years of experience
in prostate radiology independently redrew the ROIs. Repeatability
and tumor contrast analyses were performed using both sets of ROIs.

Repeatability in Healthy Volunteers

The By-corrected z-spectra from all voxels within each ROI were aver-
aged to generate a single z-spectrum per ROI that was fitted using the
four-pool model to extract amide, NOE, and MT measurements, and
the MTR i, was calculated. Bland—Altman plots were used to evalu-
ate the intrasession and intersession repeatability of the technique.*
For intrasession repeatability, the results from the first scan of each
session were compared with the results from the second scan of the
same session, with scans being separated by a total of 6 minutes
23 seconds. For intersession repeatability, the results from the first
scan of the first session were compared with the results of the first
scan of the second session, and similarly with the second scan of each
session. The coefficient of variation (CV) was calculated in the

Whole prostate z-spectra with N pulses
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FIGURE 1: Z-spectra from large ROIls drawn over the whole
prostate when using saturation trains with N =20, 30, 40,
50, and 60 Gaussian pulses. The error bars show the standard
deviation of the signal across all voxels within each ROI. The
z-spectrum approaches saturation steady-state with increasing N.
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standard way for each metric (amide, NOE, MT, and MTR,,). The
95% limits of agreement (LOA), derived in each case from the
Bland—Altman analysis, are the values within which 95% of the differ-
ences between measurements are expected to lie, and the bias is the
mean difference between scans. In the ideal case of perfect repeatabil-
ity with no noise, the LOA, bias, and CV are all zero.

Contrast in Tumor Tissue

Maps of the amide, NOE, and MT peak-heights, and the MTR 5y
were generated by performing voxel-wise analysis of the patient
scans. Boxplots of the signal from all voxels within tumor and AUT
ROIs were created. The significance of the observed image contrast
between tumor and AUT in patient scans was evaluated by treating
each group of voxels within an image as an independent sample and
applying a nonparametric Mann—Whitney U-test with P < 0.05
taken to be significant.

Results

Acquisition and Fitting Protocol Optimization
Figure 1 shows the z-spectra from an ROI drawn over the
whole prostate for different numbers of saturation pulses, V.
Saturation steady-state is approached with increasing /V and
differences between subsequent z-spectra became smaller with
each increment of 10 pulses. The trade-off between small
gains in saturation and increased scan time led to the selec-
tion of 60 pulses for the final saturation scheme. For the
given saturation timings (T, = T4 = 40 msec) this corresponds
to 4.8 seconds of total saturation time.

In keeping with reference values from the literature™
and data that were acquired in a healthy volunteer (data not

MT offset frequency histogram
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FIGURE 2: Histogram showing the distribution of offset
frequencies of the fitted MT super-Lorentzian across prostate
voxels taken from five healthy volunteers when fitting only data
points outside of the +15 ppm range.
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FIGURE 3: A plot of the mean heights of the fitted amide, NOE,
and MT peaks over all voxels of a whole prostate for a range of
saturation flip angles. Error bars show the standard deviation
over all voxels. The amide and NOE signals were both
maximized using a flip angle of 1133°.
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shown), a TR of 5 sec or above was found to allow for >95%
signal recovery of M, between readouts. The final TR was
chosen to be 5.1 sec to accommodate the TSE readout
(245 msec) and 4.8 sec of saturation.

Figure 2 shows the histogram distribution of super-
Lorentzian offset frequencies when fitting only MT data
points outside of the £15 ppm range. The median offset fre-
quency was —1.27 ppm with 25" and 75" percentiles at —
2.04 ppm and -0.04 ppm, respectively. Based on these data,
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the offset of the super-Lorentzian was fixed at —1.27 ppm for
all subsequent analysis. This is similar to values used in other
Lorentzian fitting work.*?

The heights of the fitted amide, NOE, and MT peaks as
a function of saturation flip angle are shown in Fig. 3. The
MT signal increased with increasing saturation power and the
mean signals from the amide and NOE pools across the whole
prostate were jointly maximized with a saturation flip angle of
1133°, corresponding to a Bycwpr of 0.92 pT. The fit param-
eters used in the final analysis are summarized in Table 1.

Repeatability in Healthy Volunteers

Representative fitted z-spectra from ROIs drawn in the PZ,
TZ, and obturator internus muscle of a single healthy volun-
teer are shown in Fig. 4.

Figure 5a—d show Bland—Altman plots for the interses-
sion repeatability of the heights of the fitted amide, NOE,
and MT lineshapes and the MTR,,,,,, measurements, respec-
tively, using the ROIs drawn by reader 1 (intrasession plots
are not shown). The plots include the CV and the LOA
expressed in units of M, which equates to M (c0) = 1 for a
normalized z-spectrum.

The intrasession CVs of the amide, NOE, MT, and
MTR gy measurements in healthy volunteers using ROIs
drawn by reader 1 were found to be 20%, 19%, 9.5%, and
150%, respectively. The corresponding intersession CVs were
found to be 25%, 23%, 18%, and 200%, respectively.

TABLE 1. Starting Values and Upper and Lower Bounds for All Parameters Used by the Z-spectrum Fitting
Algorithm
Z-spectrum contributor Lineshape Parameter Starting value  Lower bound  Upper bound
Water Lorentzian ®o (ppm) 0.0000 —0.0001 0.0001
I' (ppm) 1.0 0.5 12.0
A (A.U) 0.8 0.1 1.0
Amide Lorentzian o (ppm) 3.500 3.499 3.501
I' (ppm) 2.0 0.5 12.0
A (AU) 0.1 0.0 1.0
NOE Lorentzian wo (ppm) -3.500 -3.501 ~3.499
I' (ppm) 2.0 0.5 12.0
A (AU) 0.1 0.0 1.0
MT Super-Lorentzian  @os; (ppm)  —1.27000 ~1.27001 ~1.26999
T? (us) 10 1 50
Asy (AU) 0.500 0.001 1.000
Horizontal Offset (whole-fit) =~ Constant b (ppm) 0.0 -0.3 0.3
Vertical Offset (whole-fit) Constant v (A.U) 0.0 -0.1 0.1
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The full CV, LOA, and bias values for amide, NOE,
MT, and MTR,,, measurements made using ROIs drawn
by both readers are shown in Table 2 along with the intra-
class correlation (ICC) coefficients between readers.

The LOA gives an indication of the threshold for reli-
able detectability of signal differences. Therefore, based on
these data, we would expect to be able to reliably detect dif-
ferences in the amplitudes of the fitted peaks from repeated
scans within a single session of 0.04-0.05 (33—-38% for amide
and NOE and 17-22% for MT) or higher. The bias is close

to zero in ¢every case.

Signal Differences in Patients

Maps of the amide, NOE, MT, and MTRym signal intensi-
ties from each patient are shown in Fig. 6 alongside the corre-
sponding Tow and DWI (b =2000) images. DWI is
particularly useful for identifying regions of PZ tumor as seen
in the figure. Tumor and AUT ROIs are overlaid onto the
images, with tumor marked with a red arrow on the T,w
images.

Boxplots of the amide, NOE, and MT signal, and the
MTR 5y, values from all voxels in AUT and tumor ROIs are
shown in Fig. 7 for both patients and both readers. Statistical
significance of signal differences between regions were
assessed using a nonparametric Mann—Whitney U-test with
significance levels of P < 0.05, P < 0.01, and P < 0.001
denoted in the boxplots by *, **, and ***, respectively.

The median amide, NOE, MT, and MTR,,.,, signals
in regions of tumor and AUT, the difference in median sig-
nals between these regions (A), and the corresponding signifi-
cance values, P, are fully tabulated in Table 3. Measurements
showing significant differences between tumor and AUT are
highlighted in bold.

Visually, hypointensities of both the amide and NOE
signals are observed in the region of TZ tumor when com-
pared with apparently uninvolved TZ (patient 1), with corre-
sponding hyperintensity of the MT signal.

For patient 2, the opposite contrast effect is observed,
with hyperintensity of amide and NOE signals within the
region of PZ tumor relative to apparently uninvolved PZ and
a corresponding relative hypointensity of the MT signal.
However, it should be noted in this case that the hyperinten-
sities of amide and NOE signals within the tumor ROI
appear to be part of broader structural features that are not
localized to the tumor itself.

In the five volunteers, MT was the most repeatable
parameter (see Table 2) with the lowest CV values and a
threshold for signal detection of 0.04-0.05 (17-22%) or
higher. In the PZ tumor patient, MT showed significant
amplitude decreases for both scans and for both readers with
signal changes in the range —0.039 to —0.085 (16-31%), con-
sistent with the repeatability threshold.

6

Discussion

In the current work, we optimized an acquisition and post-
processing pipeline for multipool CEST imaging of the pros-
tate at 3.0 T and evaluated the repeatability of the technique
in healthy volunteers. We also subsequently applied it to two
patients with proven prostate cancer.

CEST sequence parameters including number of pulses,
saturation powers, and the TR were tuned to maximize the
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FIGURE 4: Representative normalized z-spectra, fit results, and
fit residuals from ROIs drawn in the PZ, TZ, and muscle in a
single healthy volunteer, showing only the +7 ppm range. The
four-pool fit results include contributions from water, amide,
NOE, and MT. The MTR,4m, has been scaled x5 for improved
visibility. The residual differences between the raw data and the
fits are all less than 0.028.
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FIGURE 5: Bland-Altman plots showing the intersession repeatability of the heights of the fitted (a) amide, (b) NOE, and (c) MT
peaks, and (d) the MTR,y, measurements, using ROIs drawn by reader 1. Plots include the 95% LOA expressed in absolute terms

and as a percentage, the bias, and the CV.

heights of the fitted CEST and NOE peaks and the offset fre-
quency of the fitted MT peak was also estimated.

The combined scan time of the CEST and WASABI
scans was clinically acceptable at 6 minutes 23 seconds. The
pulse duration and interpulse delay parameters were not
explored during the optimization, as prior experimentation
on this scanner had indicated that saturation trains of longer
than ~1 sec were not possible when using duty cycles above
50% due to specific absorption rate (SAR) and hardware
restrictions. A pulse duration of 40 msec was chosen because
it gives rise to spectral selectivity approximating the frequency
sampling that was used (0.25 ppm or 32 Hz in the central
region of the z-spectrum).

As expected, the intrasession repeatability scores were
found to be superior to the intersession repeatability scores in
every case, as indicated by lower CV and LOA values.

Bland-Altman analysis showed that the CV values for
all fit results (both intrasession and intersession) were 25% or
lower. The intrasession 95% LOA for amide, NOE, and MT
amplitude differences were found to be between 0.04-0.05
(17-38%). The corresponding intersession values for amide
and NOE were between 0.04—0.06 (35-43%) and for MT
this rose to 0.08-0.10 (33-38%). Therefore, the threshold

for detectable differences in fitted peak amplitudes in all cases
ranged from 0.04-0.10 (17—43% depending on pool). While
inspection of the LOA values between readers suggests rea-
sonable interreader agreement, the ICC calculated for the
intrasession variability between readers was particularly low,
in part due to a low number of observations over a small
range.

By comparison, a recent study of the repeatability of
apparent diffusion coefficient (ADC) measurements in pros-
tate mp-MRI at 3.0 T found limits of agreement ranging
from 13.91% to 60.49% using an endorectal coil.’’ This
puts the repeatability of CEST fitting metrics within the
repeatability range of established ADC scans from the mp-
MRI protocol.

The fitted MT peak was found to be the most repeat-
able measurement as quantified by CV and showed the most
consistent change across both scans and readers in the PZ
tumor patient.

This is perhaps not surprising, as it is the broadest contri-
bution to the z-spectrum and all other contributions sit nested
within it in the &5 ppm range. Magnetization transfer imaging
(MT]) traditionally involves acquiring unsaturated images and
images saturated at an offset typically >1 kHz off-resonance.
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Recent work by Arlinghaus et al** showed good repeatability
of quantitative MT (gMT) imaging of the breast at 3.0 T
and Barrett et al>> demonstrated that MTT shows promise
for prostate cancer detection at 3.0 T.

It was considered whether the fitting model was able to
distinguish decreases in T, (causing broadening of the water
peak) from increases in MT signal. If the distinction could
not be made, we would expect to see an inverse correlation
between the Tow signal and MT height across the prostate
voxels. No such correlation was observed (data not shown),
which allayed concerns that the model was unable to distin-
guish between these two effects. This is attributed to the fact
that MT points acquired between =£5.5 and £ 300 ppm
allowed for proper characterization of the broad MT
resonance.

The interreader differences in CV measurements for the
fitted pools (amide, NOE, MT) are all smaller than four per-
centage points, with ICC of >0.99 suggesting that interreader
variability is not the main source of variation.

As hypothesized, there is a marked difference between
the levels of repeatability found using the fitting method,
which showed maximum intrasession and intersession CV
values of 20% and 25%, respectively, and the repeatability of

the MTR,,,,,, measurements, which showed maximum intra-
session CV of 150% and an intersession CV of 200%.

The CV values for MTR,,,,,, repeatability are poorer
than for the fitting metrics. The LOA values for MTR 1,
while larger than those reported in other endogenous CEST
repeatability studies,*® were similar to or slightly lower than
those of the fitted amide and NOE peaks. Both of these
values may be improved by using a sequence optimized for
MTR gy imaging, but that lies outside the scope of this
work, which is primarily focused on z-spectrum fitting.

All MTR 1, calculations in this work were made using
the single-offset approach described in previous prostate APT
work.>? As an alternative, the use of multiple offset frequency
points in the MTR,, calculation may reduce the effects of
noise, and therefore improve the repeatability. For illustration,
the CV values were recalculated using the mean MTR,,
values over three offset frequencies (3.25, 3.5, and 3.75 ppm)
and the intrasession CV values from both readers were reduced
to 110%, with the intersession CV values dropping to 170%
and 160%. These changes are attributed to noise averaging,
although the optimal choice of integration range and its physi-
ological significance would require further optimization and
consideration.

TABLE 2. Coefficients Of Variation (CV), 95% Limits of Agreement (LOA) and Bias of the Intrasession and
Intersession Bland-Altman Plots Generated for the Amide, Nuclear Overhauser Effect (NOE), Magnetization
Transfer (MT), and Asymmetric Magnetization Transfer Ratio (MTR,.ym) Signals in Five Healthy Volunteers
Intrasession
CvV LOA Bias
CEST Metric Reader 1 Reader 2 Reader 1 Reader 2 Reader 1 Reader 2
Amide 20% 20% 0.05 0.05 0.00 0.00
NOE 19% 18% 0.04 0.04 0.00 0.00
MT 9.5% 7.4% 0.05 0.04 0.00 0.00
MTR gy 150% 140% 0.04 0.03 0.00 0.00
ICC 0.997 0.539 —
Intersession
Reader 1 Reader 2 Reader 1 Reader 2 Reader 1 Reader 2
Amide 25% 22% 0.06 0.05 0.00 -0.01
NOE 23% 19% 0.05 0.04 -0.01 0.00
MT 18% 15% 0.10 0.08 0.00 0.00
MTR 200% 200% 0.05 0.05 0.00 0.00
ICC 0.999 0.835 —
Results are shown for analysis done using regions of interest drawn by two separate readers. The intraclass correlation (ICC) coefficients
are also provided.
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FIGURE 6: Voxelwise maps of the heights of the fitted amide, NOE and MT peaks, and the MTR,.,, measurements for (a-f) patient
1 with a TZ tumor and (g-l) patient 2 with a PZ tumor. The tumor and AUT ROIs are highlighted in red and blue, respectively, and
the tumors are highlighted with a red arrow on the T,w images. Visually, slight hypointensities are observed in the amide and NOE
signal in the region of TZ tumor with corresponding hyperintensity in the MT signal and no significant change in the MTR,ym.
Conversely, hyperintensities in the amide and NOE signals and hypointensities in both the MT and MTR,n, signals are observed in
the region of PZ tumor, although the hyperintense amide and NOE signals are not localized only to the region of tumor.

Our results suggest that, when using the acquisition
protocol outlined in this work, the fit-model described pro-
duces more repeatable CEST measurements than MTR,
analysis. This is attributed to a reduction in the influence of
noise when using whole z-spectrum fitting methods.

In the patient data the signal differences were most pro-
nounced and showed the best agreement between readers for
the second scan of the PZ tumor patient. In this case the
amide, NOE, and MTR,, signals all showed significant
increases in the region of tumor, and the MT signal was sig-
nificantly reduced. While not all of these signal differences
were larger than the previously measured LOAs for respective
pools, the statistical significance was evaluated between

groups of voxels drawn from within individual images and
therefore relate to image contrast from a single subject and
timepoint, not absolute signal measurements across multiple
subjects and multiple timepoints. The results of the statistical
significance tests should be interpreted in these terms.

The MTR,, measurements are lower than those
reported by Takayama et al,? who observed MTR 5y values
in the approximate range of 0.5-6% in PZ dssue and 3-8%
in Gleason 7 tissue using a higher saturation power of 2.0
pT. However, the MTR,,, signal enhancement in the PZ
tumor (found to be ~3% of My, averaged over readers and
scans), was broadly consistent in magnitude with the signal
changes observed by Takayama et al.” The magnitude of the

9
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FIGURE 7: Boxplots showing the fitted amide, NOE, and MT peak heights and MTR,.,, measurements from all voxels within tumor
and AUT ROIs drawn by reader 1 for (a) both scans of patient 1 with a TZ tumor, (b) both scans of patient 2 with a PZ tumor. The
red line indicates the median value of all voxels within the ROI, with the bottom and top edges of the blue box indicating the 25%
and 75" percentiles, respectively. The whiskers extend to the most extreme data points not considered outliers. Data points that
were more than 1.5x the interquartile range away from the top or bottom of the box were classed as outliers and are plotted
individually using red crosses. Significant signal differences between tumor and AUT within a given scan (as calculated using the
Mann-Whitney U-test) are denoted using single, double, or triple asterisks representing P < 0.05, P < 0.01, and P < 0.001,

respectively.

significant signal differences between AUT and both tumor
types were found to be in the range 0.01-0.06, which is con-
sistent with the magnitude of changes expected based on pre-
vious studies.®’

In terms of diagnostic prostate imaging, a comparison
can be drawn between CEST and magnetic resonance spectros-
copy (MRS), which are sources of alternative but complemen-
tary metabolic information. CEST provides chemically- and
pH-weighted information derived from exchangeable protons
across many metabolites, while MRS provides metabolite-
specific proﬁling,6 often focusing on the ratio of choline to

citrate.® While MRS has already been discussed in the context
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of mp-MRI,'® CEST is an imaging technique capable of pro-
viding higher spatial resolution than MRS in comparable scan
times (the CEST voxel size for this work is 2.2 mm” compared
with 6.9 mm*™* and 5.9 mm”® in two studies on prostate
MRS). MRS is well-suited to the characterization of known
lesions or tumors under active surveillance, but the higher in-
plane resolution of CEST is an advantage when screening for
unconfirmed lesions. CEST has already shown promise in

4635 and further investigation will allow for

cancer imaging,
exploration of its potential utility.
There are several limitations of the study. No antispas-

modic drug was given as part of this research and bowel
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Patient 1 (TZ tumor)

TABLE 3. Median amide, NOE, MT, and MTR,,, Signal Measurements in TZ AUT and TZ Tumor (Patient 1) and PZ
AUT and PZ Tumor (Patient 2)

Scan 1
Reader 1 Reader 2
Median signal TZ AUT TZ Tumor A P TZ AUT TZ Tumor A P
Amide 0.113 0.102 —0.011 (-9.7%) 0.020 0.116 0.104 —0.012 (-10.3%) 0.042
NOE 0.109 0.096 —0.012 (-11.0%) 0.001 0.116 0.098 —-0.018 (-15.5%) 0.016
MT 0.222 0.260 0.038 (17.1%)  <0.001  0.247 0.254 0.007 (2.8%) 0.357
MTR 4y 0.018 0.019 <0.001 (0.0%) 0.928 0.014 0.023 0.009 (64.3%)  0.017
Scan 2
Reader 1 Reader 2
TZ TZ TZ TZ
Median signal ~ AUT Tumor A r AUT Tumor A r
Amide 0.119 0.109 —0.010 (—8.4%) <0.001 0.112 0.112 <0.001 (0.0%) 0.668
NOE 0.120 0.102 —0.017 (-14.2%) <0.001 0.114 0.104 —0.010 (-8.8%) 0.065
MT 0.234 0.287 0.053 (22.7%) <0.001 0.261 0.275 0.014 (5.4%) 0.342
MTR 0.009 0.007 ~0.002 (-22.2%)  0.884  0.007 0.015 0.008 (114.3%)  0.029
Patient 2 (PZ tumor)
Scan 1
Reader 1 Reader 2
PZ PZ PZ PZ
Median signal ~ AUT Tumor A P AUT Tumor A r
Amide 0.131 0.148 0.017 (13.0%) 0.010 0.142 0.140 —0.002 (-1.4%) 0.456
NOE 0.122 0.115 —0.008 (-6.6%) 0.334 0.122 0.123 <0.001 (0.00%) 0.898
MT 0.227 0.172 —-0.056 (-24.7%) <0.001 0.242 0.203 —-0.039 (-16.1%) <0.001
MTR 0.020  0.065 0.045 (225%)  <0.001 0.018  0.028 0.010 (55.6%)  0.042
Scan 2
Reader 1 Reader 2
PZ PZ PZ PZ
Median signal AUT Tumor A P AUT Tumor A P
Amide 0.097 0.151 0.054 (55.7%) <0.001 0.091 0.127 0.036 (39.6%) <0.001
NOE 0.080 0.102 0.023 (28.8%) 0.004 0.075 0.100 0.025 (33.3%) <0.001
MT 0.233 0.171 —0.063 (-27.0%) <0.001 0.273 0.188 —0.085 (-31.1%) <0.001
MTRym 0.014 0.050 0.035 (250%) <0.001 0.009 0.038 0.030 (333.3%) <0.001

Data are shown for both scans of both patients using ROIs drawn by both readers. The signal difference, A, is expressed both as an
absolute value and also as a percentage of the AUT signal. All associated P-values were calculated using the Mann—Whitney U-test
and are included. Significant differences in signal between tumor and AUT are highlighted in bold. Differences in repeated signal
difference measurements (A) between scans and readers are broadly in line with the LOA values calculated earlier. The most consis-
tent signal differences are found in the MT pool, where signal in tumor often varies by over 0.04, thereby exceeding the best-case
intrasession LOA for MT. The second scan of patient 2 shows the largest overall signal differences and consistency between readers
where both the amide and MT signal changes in PZ tumor are greater than the LOA for these two pools.

motion may affect the results. Motion correction of CEST data
can be difficult due to changes in image contrast between satu-

ration frequencies; however, methods currently being devel-

oped to address this could be applied in future work.*®

To prevent overfitting, the number of free parameters

cannot be too high. For this reason, in this work we used a
four-pool model with a single CEST pool and a single NOE
pool. Optimization of the offset frequencies of these two pools

11
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was attempted by fitting many voxels with relaxed constraints
on the upper and lower bounds of the offset frequencies, but
the analysis did not converge (data not shown). We believe this
to be due to the use of a reduced number of pools, the broad-
ness of CEST resonances at 3.0 T, and the fact that different
subregions of the prostate may have different CEST pool oft-
sets. In response to this, reference values were used for the
CEST and NOE offset frequencies.”>* In particular the
amide resonant frequency of 3.5 ppm was selected because at
the low B1 saturation powers we used, the saturation efficiency
for the slow-exchanging amides is higher than for amine and
hydroxyl groups. Future CEST studies at field strengths above
3.0 T may better characterize z-spectrum features in the pros-
tate that will inform future fitting models. Generalization of
these models across sites will require the consolidation of in-
house postprocessing scripts after sufficient technical develop-
ment and validation has taken place.

The horizontal offset term varied smoothly across the
images and values were largely contained within the —0.02 ppm
to 0.04 ppm range (data not shown), suggesting that fitting
artifacts in the prostate due to poor By correction are not a major
concern when performing z-spectrum fitting with a horizontal
offset. For this reason, regularization of the horizontal offset con-
stant (for example, using IDEAL-fitting as per Zhou et al’’) was
not applied, although this could be applied in future work. Varia-
tion of the vertical offset parameter across the prostate (with
values largely confined to within a range of +0.01, data not
shown) was not smoothly varying across the field of view, but as
this term is included to correct for noise, this was expected.

A single-slice readout was chosen for the benefit of hav-
ing a shorter readout time and the slice thickness was 4 mm.
Partial volume effects may have influenced the results,
although the slice positioning was centered at the largest
cross-section of the gland in healthy volunteers, and across
the largest cross-section of the tumors (which were both
>10 mm in diameter) in patients. It is expected that this will
have helped to minimize partial volume effects in this study.
As a clinical tool, the protocol would benefit from an
increased number of slices with thickness <4 mm to provide
greater coverage and minimize these effects.

Optimization of saturation parameters for maximal
absolute amide and NOE signals was performed in healthy
volunteers using data from the whole prostate, including PZ
and TZ subregions. The chosen saturation power of 0.92 uT
was broadly consistent with saturation powers used in other
endogenous CEST studies utilizing z-spectrum fitting that
utilize Bl wpg in the region of 1.0 uT. 237 For optimal can-
cer detection, a protocol needs to provide an adequate level of
signal and contrast between AUT and tumor and variations
in T; and T, values, pH and metabolite concentrations
between regions may influence the optimal parameter set.
Further work using patients may refine the protocol for can-
cer detection.
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Multipool CEST imaging protocols similar to the one
outlined in this work may be able to integrate traditional MTI
metrics with semiquantitative CEST measurements to provide
more detailed exchange-based parametric information in sup-
port of mp-MRI protocols for the imaging of prostate cancer.

The accuracy of repeatability scores and evaluation of
CEST contrast in prostate tumors would be improved with the
inclusion of more subjects, but the numbers included in this
study provide a benchmark for repeatability and CEST con-
trast in tumors similar to previous works®” and these initial
results may be used to power future prostate CEST studies.

In summary, we optimized a full-z-spectrum acquisition
and fitting protocol suitable for prostate imaging on a 3.0 T scan-
ner within clinically feasible scan times. The repeatability of the
fitting metrics are comparable to other mp-MRI scans and are
seen to be more repeatable than MTR .. This demonstration of
z-spectrum fitting at 3.0 T and quantification of the repeatability

of in vivo CEST metrics on a clinical scanner™®>>

is a necessary
step towards the translation of CEST techniques to the clinic.

A study with a larger patient cohort is required to draw
any conclusions about the magnitude of signal changes in dis-
ease and the work presented here may inform both the acqui-
sition protocol and the powering of such a study.

Matlab scripts used in this analysis are available at:

hteps://github.com/vsevans/ CEST.
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