14 research outputs found

    Antioxidant and Anti-Inflammatory Strategies Based on the Potentiation of Glutathione Peroxidase Activity Prevent Endothelial Dysfunction in Chronic Kidney Disease

    Get PDF
    BACKGROUND/AIMS: Accelerated atherosclerosis in chronic kidney disease (CKD) is preceded by endothelial dysfunction (ED), which exhibits a proinflammatory and prothrombotic phenotype and enhanced oxidative stress. In this study, the effect of several compounds with anti-inflammatory and/or antioxidant properties on uremia-induced endothelial dysfunction has been evaluated in an in vitro model. METHODS: Endothelial cells (ECs) were exposed to sera from uremic patients in the absence and presence of the flavonoids apigenin, genistein and quercetin, the antioxidant enzyme mimetics (AEM) ebselen (glutathione peroxidase mimetic), EUK-134 and EUK-118 (both superoxide dismutase mimetics), and the pharmacological drug N-acetylcysteine (NAC). We explored changes in the expression of adhesion receptors on the cell surface, by immunofluorescence, the production of radical oxygen species (ROS), by fluorescence detection, and the activation of signaling proteins related to inflammation, by both a phosphospecific antibody cell-based ELISA and immunoblotting techniques. RESULTS: Uremic media induced a significantly increased expression of ICAM-1, overproduction of radical oxygen species (ROS) and activation of p38 mitogen activated protein kinase (p38MAPK) and Nuclear Factor kB (NFkB) in ECs. Quercetin, the AEM and NAC showed a significant inhibitory effect on both ICAM-1 expression and ROS generation (p<0.05). All the compounds reduced p38MAPK activation, but only the AEM, especially ebselen, and NAC, both potentiating the glutathione peroxidase pathway, also inhibited NFkB activation. These two compounds were capable of increasing endothelial glutathione levels, especially in response to uremia. CONCLUSION: Our results indicate that the potentiation of the antioxidant pathways can be an effective strategy to improve endothelial dysfunction in uremia and a potential target to reduce the cardiovascular risk in this population

    Endothelial damage, inflammation and immunity in chronic kidney disease

    Get PDF
    Chronic kidney disease (CKD) patients have an accelerated atherosclerosis, increased risk of thrombotic-ischemic complications, and excessive mortality rates when compared with the general population. There is also evidence of an endothelial damage in which the proinflammatory state, the enhanced oxidative stress, or the accumulation of toxins due to their reduced renal clearance in uremia play a role. Further, there is evidence that uremic endothelial cells are both involved in and victims of the activation of the innate immunity. Uremic endothelial cells produce danger associated molecular patterns (DAMPS), which by binding to specific pattern recognition receptors expressed in multiple cells, including endothelial cells, induce the expression of adhesion molecules, the production of proinflammatory cytokines and an enhanced production of reactive oxygen species in endothelial cells, which constitute a link between immunity and inflammation. The connection between endothelial damage, inflammation and defective immunity in uremia will be reviewed here

    Antioxidant and Anti-Inflammatory Strategies Based on the Potentiation of Glutathione Peroxidase Activity Prevent Endothelial Dysfunction in Chronic Kidney Disease

    Get PDF
    Background/Aims: Accelerated atherosclerosis in chronic kidney disease (CKD) is preceded by endothelial dysfunction (ED), which exhibits a proinflammatory and prothrombotic phenotype and enhanced oxidative stress. In this study, the effect of several compounds with anti-inflammatory and/or antioxidant properties on uremia-induced endothelial dysfunction has been evaluated in an in vitro model. Methods: Endothelial cells (ECs) were exposed to sera from uremic patients in the absence and presence of the flavonoids apigenin, genistein and quercetin, the antioxidant enzyme mimetics (AEM) ebselen (glutathione peroxidase mimetic), EUK-134 and EUK-118 (both superoxide dismutase mimetics), and the pharmacological drug N-acetylcysteine (NAC). We explored changes in the expression of adhesion receptors on the cell surface, by immunofluorescence, the production of radical oxygen species (ROS), by fluorescence detection, and the activation of signaling proteins related to inflammation, by both a phosphospecific antibody cell-based ELISA and immunoblotting techniques. Results: Uremic media induced a significantly increased expression of ICAM-1, overproduction of radical oxygen species (ROS) and activation of p38 mitogen activated protein kinase (p38MAPK) and Nuclear Factor kB (NFkB) in ECs. Quercetin, the AEM and NAC showed a significant inhibitory effect on both ICAM-1 expression and ROS generation (p&#x3c;0.05). All the compounds reduced p38MAPK activation, but only the AEM, especially ebselen, and NAC, both potentiating the glutathione peroxidase pathway, also inhibited NFkB activation. These two compounds were capable of increasing endothelial glutathione levels, especially in response to uremia. Conclusion: Our results indicate that the potentiation of the antioxidant pathways can be an effective strategy to improve endothelial dysfunction in uremia and a potential target to reduce the cardiovascular risk in this population

    Complement and coagulation cascades activation is the main pathophysiological pathway in early-onset severe preeclampsia revealed by maternal proteomics

    Get PDF
    Preeclampsia is a pregnancy-specific multisystem disorder and a leading cause of maternal and perinatal morbidity and mortality. The exact pathogenesis of this multifactorial disease remains poorly defined. We applied proteomics analysis on maternal blood samples collected from 14 singleton pregnancies with early-onset severe preeclampsia and 6 uncomplicated pregnancies to investigate the pathophysiological pathways involved in this specific subgroup of preeclampsia. Maternal blood was drawn at diagnosis for cases and at matched gestational age for controls. LC-MS/MS proteomics analysis was conducted, and data were analyzed by multivariate and univariate statistical approaches with the identification of differential pathways by exploring the global human protein-protein interaction network. The unsupervised multivariate analysis (the principal component analysis) showed a clear difference between preeclamptic and uncomplicated pregnancies. The supervised multivariate analysis using orthogonal partial least square discriminant analysis resulted in a model with goodness of fit (R2X = 0.99, p < 0.001) and a strong predictive ability (Q2Y = 0.8, p < 0.001). By univariate analysis, we found 17 proteins statistically different after 5% FDR correction (q-value < 0.05). Pathway enrichment analysis revealed 5 significantly enriched pathways whereby the activation of the complement and coagulation cascades was on top (p = 3.17e-07). To validate these results, we assessed the deposits of C5b-9 complement complex and on endothelial cells that were exposed to activated plasma from an independent set of 4 cases of early-onset severe preeclampsia and 4 uncomplicated pregnancies. C5b-9 and Von Willbrand factor deposits were significantly higher in early-onset severe preeclampsia. Future studies are warranted to investigate potential therapeutic targets for early-onset severe preeclampsia within the complement and coagulation pathway

    Effects of electret coating technology on coronary stent thrombogenicity

    No full text
    Stent thrombosis (ST) is a catastrophic event and efforts to reduce its incidence by altering blood-stent interactions are longstanding. A new electret coating technology that produces long-lasting negative charge on stent surface could make them intrinsically resistant to thrombosis. We assessed the thrombogenicity of stents using an annular perfusion model with confocal microscopy, and determined the efficacy of electret coating technology to confer thrombo-resistant properties to standard stents. Using an annular perfusion chamber, Bare Metal Stent (BMS), standard uncoated DES (DES), and Electret-coated DES (e-DES) were exposed to human blood under arterial flow conditions. Deposits of fibrinogen and platelets on the stent surface were analyzed using immunofluorescence staining and confocal microscopy. Surface coverage by fibrinogen and platelets and the deposit/aggregate size were quantified using computerized morphometric analysis. The experimental methodology produced consistent, quantifiable results. Area of stent surface covered by fibrinogen and platelets and the average size of the deposits/aggregates were lowest for e-DES and highest on BMS, with DES in the middle. The size of fibrinogen–deposits showed no differences between the stents. The testing methodology used in our study successfully demonstrated that electret coating confers significant antithrombotic property to DES stents. These findings warrant confirmation in a larger study

    Differential protein expression in endothelial cells exposed to serum from patients with acute graft-vs-host disease, depending on steroid response

    Get PDF
    Altres ajuts: Fundació La Marató de TV3 (202026-10); Deutsche Forschungsgemeinschaft, Grant/Award Number: PE 1450/7-1 and PE 1450/9-1; Deutsche Krebshilfe, Grant/Award Number: 70113519Graft-versus-host disease (GVHD) is a complication of allogeneic haematopoietic cell transplantation. Endothelial injury is crucial as pathophysiological substrate for GVHD. GVHD first-line treatment is high-dose corticosteroids, although some patients are steroid-refractory. Through the present study, we compared the endothelial proteomic profiles in response to serum from steroid-refractory acute GVHD (SR-aGVHD) and steroid-sensitive acute GVHD (SS-aGVHD) patients. Blood samples from SR-aGVHD (n = 4) and SS-aGVHD (n = 8) patients were collected at aGVHD diagnosis. Endothelial cell cultures were exposed (48 h) to patients' serum. Protein extraction and proteomic analysis were performed. Differences were statistically evaluated by multivariate analysis. Forty-four proteins contributed to separate all samples into the two study groups, among which 15 participated significantly (p 1.2. Differentially expressed proteins were mainly associated with oxidative phosphorylation (Cytochrome C oxidase subunit 6B1, CX6B1), inflammation and angiogenesis (Apolipoprotein D, APOD), cell survival (Rapamycin-insensitive companion of mTOR, RICTR), and oxidative stress (Riboflavin kinase, RIFK). This pilot study used a novel approach to distinguish the aGVHD response to steroid treatment. The proteins differentially expressed could constitute potential biomarkers for steroid-treatment response. These findings signify a step forward to identify the mechanisms of response to steroids, of high clinical relevance considering the SR-aGVHD elevated mortality

    Up-regulation of HDACs, a harbinger of uremic endothelial dysfunction, is prevented by defibrotide

    Get PDF
    Endothelial dysfunction is an earlier contributor to the development of atherosclerosis in chronic kidney disease (CKD), in which the role of epigenetic triggers cannot be ruled out. Endothelial protective strategies, such as defibrotide (DF), may be useful in this scenario. We evaluated changes induced by CKD on endothelial cell proteome and explored the effect of DF and the mechanisms involved. Human umbilical cord vein endothelial cells were exposed to sera from healthy donors (n = 20) and patients with end-stage renal disease on haemodialysis (n = 20). Differential protein expression was investigated by using a proteomic approach, Western blot and immunofluorescence. HDAC1 and HDAC2 overexpression was detected. Increased HDAC1 expression occurred at both cytoplasm and nucleus. These effects were dose-dependently inhibited by DF. Both the HDACs inhibitor trichostatin A and DF prevented the up-regulation of the endothelial dysfunction markers induced by the uraemic milieu: intercellular adhesion molecule-1, surface Toll-like receptor-4, von Willebrand Factor and reactive oxygen species. Moreover, DF down-regulated HDACs expression through the PI3/AKT signalling pathway. HDACs appear as key modulators of the CKD-induced endothelial dysfunction as specific blockade by trichostatin A or by DF prevents endothelial dysfunction responses to the CKD insult. Moreover, DF exerts its endothelial protective effect by inhibiting HDAC up-regulation likely through PI3K/AKT

    Antithrombotic and prohemorrhagic actions of different concentrations of apixaban in patients exposed to single and dual antiplatelet regimens

    Get PDF
    Altres ajuts: Deutsche José Carreras Leukämie-Stifung (03R/ 2019)We evaluated modifications in the hemostatic balance of different concentrations of apixaban (APIX) in 25 healthy donors and 53 patients treated with aspirin (ASA, n = 21), ASA and clopidogrel (ASA + CLOPI, n = 11), or ASA and ticagrelor (ASA + TICA, n = 21). Blood samples from participants were spiked ex vivo with apixaban 0 (APIX0), 40 (APIX40), and 160 ng/mL (APIX160). We assessed the effects of APIX on (1) clot formation, by ROTEM thromboelastometry; (2) thrombin generation primed by platelets; and (3) platelet and fibrin interactions with a thrombogenic surface, in a microfluidic model with circulating blood. APIX caused dose-related prolongations of clotting time with minimal impact on other ROTEM parameters. Thrombin generation was significantly inhibited by APIX160, with ASA + TICA actions showing the strongest inhibition (p < 0.01 vs APIX0). Microfluidic studies showed that APIX160 was more potent at suppressing platelet and fibrin interactions (p < 0.001 vs. APIX0). APIX40 demonstrated a consistent antithrombotic action but with a favorable protective effect on the structural quality of fibrin. APIX potentiated the antithrombotic effects of current antiplatelet regimens. APIX at 40 ng/mL, enhanced the antithrombotic action of single or dual antiplatelet regimens but was more conservative for hemostasis than the 160 ng/mL concentration

    Antithrombotic and prohemorrhagic actions of different concentrations of apixaban in patients exposed to single and dual antiplatelet regimens

    No full text
    Abstract We evaluated modifications in the hemostatic balance of different concentrations of apixaban (APIX) in 25 healthy donors and 53 patients treated with aspirin (ASA, n = 21), ASA and clopidogrel (ASA + CLOPI, n = 11), or ASA and ticagrelor (ASA + TICA, n = 21). Blood samples from participants were spiked ex vivo with apixaban 0 (APIX0), 40 (APIX40), and 160 ng/mL (APIX160). We assessed the effects of APIX on (1) clot formation, by ROTEM thromboelastometry; (2) thrombin generation primed by platelets; and (3) platelet and fibrin interactions with a thrombogenic surface, in a microfluidic model with circulating blood. APIX caused dose-related prolongations of clotting time with minimal impact on other ROTEM parameters. Thrombin generation was significantly inhibited by APIX160, with ASA + TICA actions showing the strongest inhibition (p < 0.01 vs APIX0). Microfluidic studies showed that APIX160 was more potent at suppressing platelet and fibrin interactions (p < 0.001 vs. APIX0). APIX40 demonstrated a consistent antithrombotic action but with a favorable protective effect on the structural quality of fibrin. APIX potentiated the antithrombotic effects of current antiplatelet regimens. APIX at 40 ng/mL, enhanced the antithrombotic action of single or dual antiplatelet regimens but was more conservative for hemostasis than the 160 ng/mL concentration
    corecore