15 research outputs found
Contribución de la red de seguimiento de la calidad de los ríos guipuzcoanos al conocimiento de la distribución de los Odonata de Gipuzkoa (España)
Se aportan datos sobre la distribución de las especies de odonatos reófilos procedentes del análisis de las larvas incluidas en las muestras de macroinvertebrados bentónicos recolectadas en las campañas de seguimiento de la calidad de los ríos de Gipuzkoa (España) de los últimos años. Son especialmente interesantes las citas de Coenagrion mercuriale (Charpentier, 1840), Onychogomphus forcipatus forcipatus (Linnaeus, 1758), Onychogomphus forcipatus unguiculatus (Vander Linden, 1820) y Oxygastra curtisii (Dale, 1834). Contribution of the Guipuzcoan river quality monitoring network to the knowledge of the distribution of Odonata in Gipuzkoa (Spain) Abstract: Data on the distribution of rheophilic Odonata are presented, extracted from the analysis of the larvae included in the samples of benthic macroinvertebrates collected in a series of river quality monitoring campaigns conducted in Gipuzkoa (Spain). Records of special interest are those of Coenagrion mercuriale (Charpentier, 1840), Onychogomphus forcipatus forcipatus (Linnaeus, 1758), Onychogomphus forcipatus unguiculatus (Vander Linden, 1820) and Oxygastra curtisii (Dale, 1834)
Contribución de la Red de control de la calidad biológica de las aguas super ciales de Navarra al conocimiento distributivo de los odonatos fluviales de Navarra
Simposio Ibérico de Odonatología (2º. 2018. Lugo)El Servicio del Agua del Gobierno de Navarra cuenta con una amplia red de muestreo para el estudio anual de los Índices Bióticos de los ríos de Navarra. Entre los parámetros analizados se encuentran los macroinvertebrados bentónicos, grupo faunístico que incluye a las larvas de odonatos. La metodología utilizada se basa en las directrices emanadas de la propuesta AQEM (Assessment System for the Ecological Quality of Streams and Rivers throughout Europe using Benthic Macroinvertebrates) para la implementación de la Directiva Marco del Agua y consiste en la toma de muestras, %jación y procesamiento en laboratorio, donde tiene lugar la identi%cación taxonómica de los organismos bentónicos, hasta el nivel de Familia en el caso de los odonatos. Dado que los odonatos constituyen el orden de invertebrados que comparativamente a su número de especies tienen una mayor presencia en catálogos y normas sobre especies amenazadas (Directiva 92/43/CEE de Hábitats, Lista Roja de los invertebrados de España, etc.), y que el conocimiento sobre este grupo faunístico en el territorio navarro se reduce mayoritariamente a recopilaciones de observaciones y citas de imagos, se han extraído las larvas de odonatos contenidas en las muestras recolectadas en la red fluvial de Navarra los últimos 7 años, identificándolas hasta el nivel taxonómico más bajo posible. Así, han podido identificarse 678 ejemplares pertenecientes a 20 taxones distintos, entre los que destacan Coenagrion mercuriale (Charpentier, 1840), Oxygastra curtisii (Dale, 1834), Gomphus similimus (Sélys, 1840) y Gomphus vulgatissimus (Linnaeus, 1758). Se aportan mapas con las localizaciones, en muchos casos nuevas, para estas especies
Distribution of the Iberian Calopteryx Damselflies and Its Relation with Bioclimatic Belts: Evolutionary and Biogeographic Implications
Using bioclimatic belts as habitat and distribution predictors, the present study examines the implications of the potential distributions of the three Iberian damselflies, Calopteryx Leach (Odonata: Calopterygidae), with the aim of investigating the possible consequences in specific interactions among the species from a sexual selection perspective and of discussing biogeographical patterns. To obtain the known distributions, the literature on this genus was reviewed, relating the resulting distributions to bioclimatic belts. Specific patterns related to bioclimatic belts were clearly observed in the Mediterranean region. The potential distribution maps and relative frequencies might involve latitudinal differences in relative abundances, C. virgo meridionalis Sélys being the most abundant species in the Eurosiberian region, C. xanthostoma (Charpentier) in the northern half of the Mediterranean region and C. haemorrhoidalis (Vander Linden) in the rest of this region. These differences might explain some previously described latitudinal differences in secondary sexual traits in the three species. Changes in relative abundances may modulate interactions among these species in terms of sexual selection and may produce sexual character displacement in this genus. C. virgo meridionalis distribution and ecological requirements explain its paleobiogeography as a species which took refuge in Iberia during the Würm glaciation. Finally, possible consequences in species distributions and interactions are discussed within a global climate change context
Introgression and rapid species turnover in sympatric damselflies
<p>Abstract</p> <p>Background</p> <p>Studying contemporary hybridization increases our understanding of introgression, adaptation and, ultimately, speciation. The sister species <it>Ischnura elegans </it>and <it>I. graellsii </it>(Odonata: Coenagrionidae) are ecologically, morphologically and genetically similar and hybridize. Recently, <it>I. elegans </it>has colonized northern Spain, creating a broad sympatric region with <it>I. graellsii</it>. Here, we review the distribution of both species in Iberia and evaluate the degree of introgression of <it>I. graellsii </it>into <it>I. elegans </it>using six microsatellite markers (442 individuals from 26 populations) and five mitochondrial genes in sympatric and allopatric localities. Furthermore, we quantify the effect of hybridization on the frequencies of the genetically controlled colour polymorphism in females of both species.</p> <p>Results</p> <p>In a principal component analysis of the microsatellite data, the first two principal components summarised almost half (41%) of the total genetic variation. The first axis revealed a clear separation of <it>I. graellsii </it>and <it>I</it>. <it>elegans </it>populations, while the second axis separated <it>I. elegans </it>populations. Admixture analyses showed extensive hybridization and introgression in <it>I. elegans </it>populations, consistent with <it>I. elegans </it>backcrosses and occasional F<sub>1</sub>-hybrids, suggesting hybridization is on-going. More specifically, approximately 58% of the 166 Spanish <it>I. elegans </it>individuals were assigned to the <it>I. elegans </it>backcross category, whereas not a single of those individuals was assigned to the backcross with <it>I. graellsii</it>. The mitochondrial genes held little genetic variation, and the most common haplotype was shared by the two species.</p> <p>Conclusions</p> <p>The results suggest rapid species turnover in sympatric regions in favour of <it>I. elegans</it>, corroborating previous findings that <it>I. graellsii </it>suffers a mating disadvantage in sympatry with <it>I. elegans</it>. Examination of morph frequency dynamics indicates that hybridization is likely to have important implications for the maintenance of multiple female morphs, in particular during the initial period of hybridization.</p
Confirmación de la reproducción de Gomphus graslinii (Rambur, 1844) y odonatofauna fluvial de los Prepirineos del este de Navarra
Gomphus graslinii (Rambur, 1844) es una libélula amenazada incluida en el Catálogo Español de Especies Amenazadas y en la Directiva Hábitats de la Unión Europea. Presenta una distribución sumamente fragmentada en la Península Ibérica, siendo muy escasas las poblaciones conocidas y citas publicadas en su cuadrante nororiental, entre ellas dos citas de especímenes adultos en Navarra. Se ha buscado en ríos prepirenaicos del oriente navarro, muestreándose 23 tramos en la zona y aportándose datos sobre su reproducción en dos tramos del río Salazar. Se proporcionan también datos de otras 24 especies de odonatos, incluyendo a Gomphus simillimus Selys, 1840 y Coenagrion caerulescens (Fonscolombe, 1838), consideradas como vulnerables en el Atlas y Libro Rojo de los Invertebrados de España
Why do red and dark-coloured cars lure aquatic insects? The attraction of water insects to car paintwork explained by reflection–polarization signals
We reveal here the visual ecological reasons for the phenomenon that aquatic insects often land on red, black and dark-coloured cars. Monitoring the numbers of aquatic beetles and bugs attracted to shiny black, white, red and yellow horizontal plastic sheets, we found that red and black reflectors are equally highly attractive to water insects, while yellow and white reflectors are unattractive. The reflection–polarization patterns of black, white, red and yellow cars were measured in the red, green and blue parts of the spectrum. In the blue and green, the degree of linear polarization p of light reflected from red and black cars is high and the direction of polarization of light reflected from red and black car roofs, bonnets and boots is nearly horizontal. Thus, the horizontal surfaces of red and black cars are highly attractive to red-blind polarotactic water insects. The p of light reflected from the horizontal surfaces of yellow and white cars is low and its direction of polarization is usually not horizontal. Consequently, yellow and white cars are unattractive to polarotactic water insects. The visual deception of aquatic insects by cars can be explained solely by the reflection–polarizational characteristics of the car paintwork