134 research outputs found

    Optimising targets for tsetse control:Taking a fly’s-eye-view to improve the colour of synthetic fabrics

    Get PDF
    The savannah tsetse flies, Glossina morsitans morsitans and G. pallidipes, are important vectors of Rhodesian human African trypanosomiasis and animal African trypanosomiasis in East and southern Africa. We tested in Zimbabwe whether robust, synthetic fabrics, and innovative fly’s-eye-view approaches to optimise fabric colour, can improve insecticide-treated targets employed for tsetse control. Flies were caught by electrocution at a standard target comprising a 1m x 1m black cotton cloth panel with 1m x 0.5m black polyester net panels on each side. Catches were subdivided by species and sex. Tsetse catches were unaffected by substitution of the black cotton with a blue polyester produced for riverine tsetse targets. Exchanging the net panels for phthalogen blue cotton to simulate the target routinely used in Zimbabwe significantly reduced catches of female G. m. morsitans (mean catch 0.7 times that at standard), with no effect on other tsetse catches. However, significantly greater proportions of the catch were intercepted at the central panel of the Zimbabwe (means 0.47–0.79) versus standard designs (0.11–0.29). We also engineered a new violet polyester cloth using models of tsetse attraction based upon fly photoreceptor responses. With and without odour lure, catches of females of both species at the violet target were significantly greater than those at standard (means 1.5–1.6 times those at standard), and typical blue polyester targets (means 0.9–1.3 times those at standard). Similar effects were observed for males under some combinations of species and odour treatment. The proportions of catch intercepted at the central panel of the violet target (means 0.08–0.18) were intermediate between those at standard and typical blue polyester. Further, the reflectance spectrum of violet polyester was more stable under field conditions than that of black cotton. Our results demonstrate the effectiveness of photoreceptor-based models as a novel means of improving targets to control tsetse and trypanosomiases

    Quantitative evaluation of the strategy to eliminate human African trypanosomiasis in the Democratic Republic of Congo

    Get PDF
    Background: The virulent vector-borne disease, Gambian human African trypanosomiasis (HAT), is one of several diseases targeted for elimination by the World Health Organization. This article utilises human case data from a high-endemicity region of the Democratic Republic of Congo in conjunction with a suite of novel mechanistic mathematical models to address the effectiveness of on-going active screening and treatment programmes and compute the likely time to elimination as a public health problem (i.e. <1 case per 10,000 per year). Methods: The model variants address uncertainties surrounding transmission of HAT infection including heterogeneous risk of exposure to tsetse bites, non-participation of certain groups during active screening campaigns and potential animal reservoirs of infection. Results: Model fitting indicates that variation in human risk of tsetse bites and participation in active screening play a key role in transmission of this disease, whilst the existence of animal reservoirs remains unclear. Active screening campaigns in this region are calculated to have been effective, reducing the incidence of new human infections by 52–53 % over a 15-year period (1998–2012). However, projections of disease dynamics in this region indicate that the elimination goal may not be met until later this century (2059–2092) under the current intervention strategy. Conclusions: Improvements to active detection, such as screening those who have not previously participated and raising overall screening levels, as well as beginning widespread vector control in the area have the potential to ensure successful and timely elimination

    Factors Affecting the Propensity of Tsetse Flies to Enter Houses and Attack Humans Inside: Increased Risk of Sleeping Sickness in Warmer Climates

    Get PDF
    Background Sleeping sickness, or human African trypanosomiasis, is caused by two species of Trypanosoma brucei that are transmitted to humans by tsetse flies (Glossina spp.) when these insects take a bloodmeal. It is commonly assumed that humans must enter the normal woodland habitat of the flies to become infected, but recent studies found that tsetse frequently attack humans inside buildings. Factors affecting human/tsetse contact in buildings need identification. Methodology/Principal Findings In Zimbabwe, tsetse were allowed access to a house via an open door. Those in the house at sunset, and those alighting on humans in the house during the day, were caught using hand-nets. Total catches were unaffected by: (i) the presence of humans in the house and at the door, (ii) wood smoke from a fire inside the house or just outside, (iii) open windows, and (iv) chemicals simulating the odor of cattle or of humans. Catches increased about 10-fold with rising ambient temperatures, and during the hottest months the proportion of the total catch that was taken from the humans increased from 5% to 13%. Of the tsetse caught from humans, 62% consisted of female G. morsitans morstans and both sexes of G. pallidipes, i.e., the group of tsetse that normally alight little on humans. Some of the tsetse caught were old enough to be effective vectors. Conclusion/Significance Present results confirm previous suggestions that buildings provide a distinctive and important venue for transmission of sleeping sickness, especially since the normal repellence of humans and smoke seems poorly effective in such places. The importance of the venue would be increased in warmer climates

    Identification of the area sampled by traps: A modelling study with tsetse

    Get PDF
    Background Sampling with traps provides the most common means of investigating the abundance, composition and condition of tsetse populations. It is thus important to know the size of the area from which the samples originate, but that topic is poorly understood. Methods and principal findings The topic was clarified with the aid of a simple deterministic model of the mobility, births and deaths of tsetse. The model assessed how the sampled area changed according to variations in the numbers, arrangement and catching efficiency of traps deployed for different periods in a large block of homogeneous habitat subject to different levels of fly mortality. The greatest impacts on the size of the sampled area are produced by the flies’ mean daily step length and the duration of trapping. There is little effect of trap type. The daily death rate of adult flies is unimportant unless tsetse control measures increase the mortality several times above the low natural rates. Conclusions Formulae for predicting the probability that any given captured fly originated from various areas around the trap are produced. Using a mean daily step length (d) of 395m, typical of a savannah species of tsetse, any fly caught by a single trap in a 5-day trapping period could be regarded, with roughly 95% confidence, as originating from within a distance of 1.3km of the trap that is from an area of 5.3km2

    Fragile and conflict affected states: report from the Consultation on Collaboration for Applied Health Research and Delivery

    Get PDF
    Fragile and Conflict Affected States present difficult contexts to achieve health system outcomes and are neglected in health systems research. This report presents key debates from the Consultation of the Collaboration for Applied Health Research and Delivery, Liverpool, June, 2014

    Costs Of Using “Tiny Targets” to Control Glossina fuscipes fuscipes, a Vector of Gambiense Sleeping Sickness in Arua District of Uganda

    Get PDF
    Introduction To evaluate the relative effectiveness of tsetse control methods, their costs need to be analysed alongside their impact on tsetse populations. Very little has been published on the costs of methods specifically targeting human African trypanosomiasis. Methodology/Principal Findings In northern Uganda, a 250 km2 field trial was undertaken using small (0.5 X 0.25 m) insecticide-treated targets (“tiny targets”). Detailed cost recording accompanied every phase of the work. Costs were calculated for this operation as if managed by the Ugandan vector control services: removing purely research components of the work and applying local salaries. This calculation assumed that all resources are fully used, with no spare capacity. The full cost of the operation was assessed at USD 85.4 per km2, of which USD 55.7 or 65.2% were field costs, made up of three component activities (target deployment: 34.5%, trap monitoring: 10.6% and target maintenance: 20.1%). The remaining USD 29.7 or 34.8% of the costs were for preliminary studies and administration (tsetse surveys: 6.0%, sensitisation of local populations: 18.6% and office support: 10.2%). Targets accounted for only 12.9% of the total cost, other important cost components were labour (24.1%) and transport (34.6%). Discussion Comparison with the updated cost of historical HAT vector control projects and recent estimates indicates that this work represents a major reduction in cost levels. This is attributed not just to the low unit cost of tiny targets but also to the organisation of delivery, using local labour with bicycles or motorcycles. Sensitivity analyses were undertaken, investigating key prices and assumptions. It is believed that these costs are generalizable to other HAT foci, although in more remote areas, with denser vegetation and fewer people, costs would increase, as would be the case for other tsetse control techniques

    Is the even distribution of insecticide-treated cattle essential for tsetse control? Modelling the impact of baits in heterogeneous environments

    Get PDF
    Background: Eliminating Rhodesian sleeping sickness, the zoonotic form of Human African Trypanosomiasis, can be achieved only through interventions against the vectors, species of tsetse (Glossina). The use of insecticide-treated cattle is the most cost-effective method of controlling tsetse but its impact might be compromised by the patchy distribution of livestock. A deterministic simulation model was used to analyse the effects of spatial heterogeneities in habitat and baits (insecticide-treated cattle and targets) on the distribution and abundance of tsetse. Methodology/Principal Findings: The simulated area comprised an operational block extending 32 km from an area of good habitat from which tsetse might invade. Within the operational block, habitat comprised good areas mixed with poor ones where survival probabilities and population densities were lower. In good habitat, the natural daily mortalities of adults averaged 6.14% for males and 3.07% for females; the population grew 8.46in a year following a 90% reduction in densities of adults and pupae, but expired when the population density of males was reduced to <0.1/km2; daily movement of adults averaged 249 m for males and 367 m for females. Baits were placed throughout the operational area, or patchily to simulate uneven distributions of cattle and targets. Gaps of 2–3 km between baits were inconsequential provided the average imposed mortality per km2 across the entire operational area was maintained. Leaving gaps 5–7 km wide inside an area where baits killed 10% per day delayed effective control by 4–11 years. Corrective measures that put a few baits within the gaps were more effective than deploying extra baits on the edges. Conclusions/Significance: The uneven distribution of cattle within settled areas is unlikely to compromise the impact of insecticide-treated cattle on tsetse. However, where areas of >3 km wide are cattle-free then insecticide-treated targets should be deployed to compensate for the lack of cattle

    Feasibility of community-based control of tsetse: A pilot project using Tiny Targets in the Democratic Republic of Congo

    Get PDF
    Gambianse Human African Trypanosomiasis (g-HAT) is a neglected tropical disease caused by trypanosomes transmitted by tsetse flies. 70%Most (>80%) of the cases in 2019 (604/863) occur in the Democratic Republic of Congo (DRC). and Thea national programme for g-HAT to eliminatione HAT in DRC includes athe large-scale deployment of Tiny Targets which attract and kill tsetse. This intervention is directed by vector-control specialists with small teams, moving in canoes, deploying Tiny Targets along riverbanks where tsetse concentrate. While the targets are deployed in communal areas, and the method is cheap and easy-to-use, local people have little involvement. This study aimed to evaluate if a community-led vector control programme was feasible in the context of DRC’s g-HAT elimination programme

    Evaluation of improved coloured targets to control riverine tsetse in East Africa: A Bayesian approach

    Get PDF
    Background Riverine tsetse (Glossina spp.) transmit Trypanosoma brucei gambiense which causes Gambian Human African Trypanosomiasis. Tiny Targets were developed for cost-effective riverine tsetse control, and comprise panels of insecticide-treated blue polyester fabric and black net that attract and kill tsetse. Versus typical blue polyesters, two putatively more attractive fabrics have been developed: Vestergaard ZeroFly blue, and violet. Violet was most attractive to savannah tsetse using large targets, but neither fabric has been tested for riverine tsetse using Tiny Targets. Methods We measured numbers of G. f. fuscipes attracted to electrified Tiny Targets in Kenya and Uganda. We compared violets, Vestergaard blues, and a typical blue polyester, using three replicated Latin squares experiments. We then employed Bayesian statistical analyses to generate expected catches for future target deployments incorporating uncertainty in model parameters, and prior knowledge from previous experiments. Results Expected catches for average future replicates of violet and Vestergaard blue targets were highly likely to exceed those for typical blue. Accounting for catch variability between replicates, it remained moderately probable (70–86% and 59–84%, respectively) that a given replicate of these targets would have a higher expected catch than typical blue on the same day at the same site. Meanwhile, expected catches for average violet replicates were, in general, moderately likely to exceed those for Vestergaard blue. However, the difference in medians was small, and accounting for catch variability, the probability that the expected catch for a violet replicate would exceed a Vestergaard blue equivalent was marginal (46– 71%)

    Cryptic diversity within the major trypanosomiasis vector Glossina fuscipes revealed by molecular markers

    Get PDF
    Background: The tsetse fly Glossina fuscipes s.l. is responsible for the transmission of approximately 90% of cases of human African trypanosomiasis (HAT) or sleeping sickness. Three G. fuscipes subspecies have been described, primarily based upon subtle differences in the morphology of their genitalia. Here we describe a study conducted across the range of this important vector to determine whether molecular evidence generated from nuclear DNA (microsatellites and gene sequence information), mitochondrial DNA and symbiont DNA support the existence of these taxa as discrete taxonomic units. Principal Findings: The nuclear ribosomal Internal transcribed spacer 1 (ITS1) provided support for the three subspecies. However nuclear and mitochondrial sequence data did not support the monophyly of the morphological subspecies G. f.fuscipes or G. f. quanzensis. Instead, the most strongly supported monophyletic group was comprised of flies sampled fromEthiopia. Maternally inherited loci (mtDNA and symbiont) also suggested monophyly of a group from Lake Victoria basin and Tanzania, but this group was not supported by nuclear loci, suggesting different histories of these markers. Microsatellite data confirmed strong structuring across the range of G. fuscipes s.l., and was useful for deriving the interrelationship of closely related populations. Conclusion/Significance: We propose that the morphological classification alone is not used to classify populations of G. fuscipes for control purposes. The Ethiopian population, which is scheduled to be the target of a sterile insect release (SIT) programme, was notably discrete. From a programmatic perspective this may be both positive, given that it may reflect limited migration into the area or negative if the high levels of differentiation are also reflected in reproductive isolation between this population and the flies to be used in the release programme
    corecore