
RESEARCH ARTICLE

Evaluation of improved coloured targets to

control riverine tsetse in East Africa: A

Bayesian approach

Roger D. SanterID
1*, Michael N. Okal2, Johan Esterhuizen3, Steve J. TorrID

3

1 Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth, United

Kingdom, 2 International Centre of Insect Physiology and Ecology, Nairobi, Kenya, 3 Liverpool School of

Tropical Medicine, Liverpool, United Kingdom

* rds5@aber.ac.uk

Abstract

Background

Riverine tsetse (Glossina spp.) transmit Trypanosoma brucei gambiense which causes

Gambian Human African Trypanosomiasis. Tiny Targets were developed for cost-effective

riverine tsetse control, and comprise panels of insecticide-treated blue polyester fabric and

black net that attract and kill tsetse. Versus typical blue polyesters, two putatively more

attractive fabrics have been developed: Vestergaard ZeroFly blue, and violet. Violet was

most attractive to savannah tsetse using large targets, but neither fabric has been tested for

riverine tsetse using Tiny Targets.

Methods

We measured numbers of G. f. fuscipes attracted to electrified Tiny Targets in Kenya and

Uganda. We compared violets, Vestergaard blues, and a typical blue polyester, using three

replicated Latin squares experiments. We then employed Bayesian statistical analyses to

generate expected catches for future target deployments incorporating uncertainty in model

parameters, and prior knowledge from previous experiments.

Results

Expected catches for average future replicates of violet and Vestergaard blue targets were

highly likely to exceed those for typical blue. Accounting for catch variability between repli-

cates, it remained moderately probable (70–86% and 59–84%, respectively) that a given

replicate of these targets would have a higher expected catch than typical blue on the same

day at the same site. Meanwhile, expected catches for average violet replicates were, in

general, moderately likely to exceed those for Vestergaard blue. However, the difference in

medians was small, and accounting for catch variability, the probability that the expected

catch for a violet replicate would exceed a Vestergaard blue equivalent was marginal (46–

71%).
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Editor: Jérémy Bouyer, CIRAD, FRANCE

Received: October 26, 2020

Accepted: May 11, 2021

Published: June 21, 2021

Copyright: © 2021 Santer et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its supporting

information files.

Funding: RDS received funding from the HEFCW

Global Challenges Research Fund (www.hefcw.ac.

uk), distributed via the Centre for International

Development Research at Aberystwyth. SJT

received funding from the Biotechnology and

Biological Sciences Research Council (www.bbsrc.

ukri.org; grants BB/S01375X/1 and BB/L019035/1)

and Bill and Melinda Gates Foundation (www.

gatesfoundation.org; grants OPP1154033 and INV-

001785). These funders had no role in study

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by LSTM Online Archive

https://core.ac.uk/display/467108468?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0002-8248-0532
https://orcid.org/0000-0001-9550-4030
https://doi.org/10.1371/journal.pntd.0009463
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0009463&domain=pdf&date_stamp=2021-06-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0009463&domain=pdf&date_stamp=2021-06-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0009463&domain=pdf&date_stamp=2021-06-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0009463&domain=pdf&date_stamp=2021-06-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0009463&domain=pdf&date_stamp=2021-06-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0009463&domain=pdf&date_stamp=2021-06-21
https://doi.org/10.1371/journal.pntd.0009463
http://creativecommons.org/licenses/by/4.0/
http://www.hefcw.ac.uk
http://www.hefcw.ac.uk
http://www.bbsrc.ukri.org
http://www.bbsrc.ukri.org
http://www.gatesfoundation.org
http://www.gatesfoundation.org


Conclusion

Violet and Vestergaard ZeroFly blue are expected to outperform typical blue polyester in the

Tiny Target configuration. Violet is unlikely to greatly outperform Vestergaard blue deployed

in this way, but because violet is highly attractive to both riverine and savannah tsetse using

different target designs, it may provide the more suitable general-purpose fabric.

Author summary

Riverine tsetse flies transmit parasites that cause sleeping sickness, so Tiny Targets have

been developed to control them. Tiny Targets comprise adjacent panels of insecticide-

coated blue polyester fabric and black net, and they work because tsetse are attracted by

the blue fabric, and are killed by the insecticide if they make contact. In order to improve

Tiny Targets, new coloured polyester fabrics have been developed with the aim of attract-

ing more tsetse. These include a blue fabric produced by Vestergaard S.A. and currently

used to make Tiny Targets, and a violet fabric developed by modelling fly colour vision

and effective against savannah tsetse. We recorded the numbers of tsetse attracted to Tiny

Targets made from these fabrics, and a typical blue polyester. Based on our data, we pre-

dicted the performance of such Tiny Targets in future deployments. It is highly probable

that both Vestergaard blue and violet fabrics will attract more tsetse than typical blue. The

average catch at a violet Tiny Target is quite likely to exceed that at a Vestergaard blue

one, but because the difference is small and catches variable, there is unlikely to be a

meaningful performance difference between these fabrics when deployed this way.

Introduction

Riverine tsetse are the vectors of Trypanosoma brucei gambiense which causes Gambian

Human African Trypanosomiasis (gHAT, or Gambian sleeping sickness). Vector control can

make a vital contribution to current efforts to eliminate this disease, provided that control

devices are cost effective [1]. To this end, Tiny Targets have been developed that consist of two

adjacent 25 cm x 25 cm panels of insecticide-impregnated blue polyester fabric and black poly-

ester net, respectively [2–4]. Tsetse are attracted to the coloured panel and are killed upon con-

tacting the target. Polyester fabrics are used to construct Tiny Targets because they are more

durable than the phthalogen blue cottons that were used in traditional trap and target designs.

Against this practical advantage, the blue polyesters tested so far have not been as attractive to

tsetse as phthalogen blue cottons [4]. Thus, there has been an opportunity to further improve

Tiny Targets by modifying the colour of the polyester fabric panel.

Currently, two families of putatively improved polyester fabrics exist. Based on the long-

established principle that blue targets are highly attractive to tsetse, and that suppressing reflec-

tivity at UV wavelengths enhances a target’s attractiveness [4–7], blue fabrics developed by

Vestergaard S.A. are currently used in the ZeroFly Tiny Targets produced by that company.

Alongside these, violet polyesters have been developed by taking a subtly different approach,

wherein fly photoreceptor signals were calculated for previously tested fabrics and statistically

related to the numbers of tsetse they caught, leading to the principles that signals in a UV-Blue

sensitive photoreceptor (R7y) tend to enhance attraction, and signals in a UV (R7p) and a

green sensitive photoreceptor (R8y) tend to reduce attraction [8,9]. The violet fabric was
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developed by identifying a dye that would more effectively exploit these principles [10]. Both

fabrics were evaluated against savannah tsetse in Zimbabwe using the large target size recom-

mended for these flies, wherein the violet fabric often achieved significantly greater catches

than a black cotton standard target, whilst the Vestergaard blue fabric did not [10]. Neither

fabric has yet been evaluated for use against riverine tsetse using the Tiny Target

configuration.

Experimental tests to evaluate the relative effectiveness of putatively improved Tiny Target

designs for riverine tsetse are problematic. Small improvements in the cost-effectiveness of

Tiny Targets might be meaningful when they are deployed at scale, but gaining experimental

proof of such effects using the kinds of statistical tests traditionally used by biologists requires

a very large sample size. Thus, it may be costly, difficult, or even impossible to accrue an ade-

quate sample size in a single experiment to provide robust statistical proof for an improved

Tiny Target design. Bayesian statistical methods are an approach that can help overcome some

of these difficulties. Bayesian methods have the potential to incorporate prior knowledge from

earlier experiments to allow for an accumulated understanding across multiple studies, rather

than requiring definitive experimental proof within any single one [11]. Bayesian statistics esti-

mate the most plausible probability distributions for model parameters (e.g. treatment effects)

that are consistent with prior expectations and experimental data, meaning that they explicitly

represent and account for the degree of uncertainty in these parameters [11]. Finally, rather

than providing a p value that can be used to evaluate a null hypothesis, Bayesian methods facil-

itate the simulation of future events, given the entire plausible distributions of model parame-

ters, so the probability of a situation of interest occurring (e.g. one target outperforming

another), can be directly computed from these simulations, providing an intuitively under-

standable evaluation of treatment effects that accounts for uncertainty in statistical model

parameters [11].

In this work we evaluate catches of the riverine tsetse Glossina fuscipes fuscipes from Tiny

Targets in Kenya and Uganda, testing putatively improved Vestergaard blue and violet fabrics,

as well as a typical blue polyester similar to those evaluated when Tiny Targets were originally

developed [4]. We use a Bayesian approach to model tsetse catches recorded at the different

Tiny Target designs, generating posterior distributions for model coefficients that capture

uncertainty in them. Using these models, we simulate 10,000 future replicates of each Tiny

Target design that capture uncertainty in treatment effects and variability across sampling

days and locations. We then employ probabilistic reasoning to evaluate whether a given design

is likely to outperform another in future deployments.

Methods

Fabrics

The reflectance spectra for the fabrics investigated in this study are shown in Fig 1. We tested

three blue fabrics (Fig 1A), comprising: a typical blue polyester similar to those originally

tested by [4] and identical to that tested by [10] (typical blue; produced using CI Disperse Blue

60 at a dye bath concentration of 2.5%); the blue fabric currently produced by Vestergaard S.

A. for its ZeroFly Tiny targets (Vest. ZF), also tested in [10]; and a prototype blue fabric that

was produced by Vestergaard S.A. (Vest. SP23 (P)). We also tested a number of violet fabrics

(Fig 1B): our original violet fabric as tested against savannah tsetse in Zimbabwe [10] (violet;

produced using CI Disperse Violet 57 at a dye bath concentration of 7%); and a number of vio-

let fabrics with varying depths of the same dye that were produced as small samples and were

unset, resulting in more crinkled fabrics (labelled (P) for prototype to separate them from the

fabric previously tested). Based on our prior analysis of fly photoreceptor signals [8,9], we
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expected tsetse attraction to increase with dye concentration among these three prototype vio-

let fabrics. All violet and typical blue fabrics used the same base polyester (Jupiter polyester

microfibre with density 78 decitex and 72 filaments, and a weight of 80g/m2; Toray Textiles

Europe Ltd., Mansfield, UK). Both Vestergaard S.A. blue fabrics used the same base polyester

which had a coarse surface texture in contrast to the smooth surface of the other fabrics.

Tsetse catch data

We conducted a total of three experiments at study locations selected in order to sample the

riverine tsetse Glossina fuscipes fuscipes, which is among the most important vectors of Gam-

bian sleeping sickness.

We conducted two experiments on Chamaunga Island, Lake Victoria, Kenya, which was

the site of the original work evaluating coloured Tiny Targets against riverine tsetse [4]. The

first of these evaluated violet, Vest. ZF, Vest. SP23(P), and typical blue fabrics, and the second

evaluated Vest. ZF and the three prototype violets. Flies were sampled using grids of electro-

cuting wires overlaying the Tiny Target that operated between 09.00 and 12.00 hours on each

sampling day. Each experiment consisted of four repeated Latin squares (four fabrics x four

sites x four days), comprising 64 target deployments in total (16 deployments per target).

We conducted a third experiment in the Arua district of northern Uganda, testing Vest. ZF,

violet, and typical blue fabrics. In this experiment, flies were sampled between 09.00 and 13.00

Fig 1. Reflectance spectra for the polyester fabrics tested in this work. (A) Typical blue is representative of the blue

polyesters tested by [4]. Vest. ZF is the Vestergaard S.A. fabric currently used in the production of ZeroFly Tiny

Targets, and Vest. SP23 (P) is a prototype variation on that fabric. (B) Violet is the improved violet fabric tested against

savannah tsetse in Zimbabwe by [10]. The remaining violets designated (P) are unset prototypes produced using

varying depths of the same dye. Spectra were measured using an Ocean Optics USB4000 spectrometer, PX-2 pulsed

xenon light source flashing with a 30ms period, reflectance probe, and WS-1-SL standard (Ocean Insight Inc.,

Orlando, FL, USA). The reflectance probe was angled 45˚ to vertical and its tip was positioned 6 mm from the sample.

A 120 ms integration period, boxcar width of 5, and 25 scans to average were used. Three replicate spectra were

recorded for each of two reflectance probe azimuth angles on one side of the fabric. These replicates were averaged to

produce the plotted functions.

https://doi.org/10.1371/journal.pntd.0009463.g001
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hours on each sampling day. The experiment consisted of six repeated Latin squares (three fab-

rics x three sites x three days), though the number of flies caught was low and, as a result, data

collection was terminated after a total of 50 target deployments (16–17 deployments per target)

with the final Latin square incomplete.

For each experiment, we analysed total catches of G. f. fuscipes on each sampling day, com-

prising both sexes, and flies recovered from both the fabric and net portions of a Tiny Target.

Statistical analysis

We applied Bayesian statistical methods using the Rethinking package for R and Stan [11]. We

used R version 3.6.3 and Stan version 2.19.1. The inclusion of prior information in Bayesian

statistical models is a feature of them that contrasts with the statistical methods more com-

monly applied by biologists. Therefore, we divide our analyses into two sections: (i) an analysis

of Tiny Target performance that did not employ informative priors, and (ii) a fly photorecep-

tor signal-based analysis that used informative priors. For the benefit of readers more familiar

with a frequentist statistical approach, we provide such tests in S1 Statistics.

An analysis of Tiny Target performance without informative priors. Here we provide a

detailed explanation of the statistical models used to evaluate our Kenya experiments and will

subsequently explain how this approach was modified for other contexts. These models had

the following general form:

total catch � PoissonðlÞ

logðlÞ ¼ aþ zarep½i� � srep þ zaday½i� � sday þ zasite½i� � ssite þ
btarget1 � Target1þ btarget2 � Target2þ btarget3 � Target3

a � Normalð0; 10Þ

btarget1 � Normalð0; 10Þ

btarget2 � Normalð0; 10Þ

btarget3 � Normalð0; 10Þ

zarep � Normalð0; 1Þ

zaday � Normalð0; 1Þ

zasite � Normalð0; 1Þ

srep � HalfNormalð0; 1Þ

sday � HalfNormalð0; 1Þ

ssite � HalfNormalð0; 1Þ

We modelled tsetse catches at Tiny Targets as a Poisson process (line 1), in which the

expected catch, λ, was the log of a linear model containing a variety of random and fixed

factors (line 2). Because tsetse catches were over-dispersed relative to the Poisson expec-

tation, our linear models included a random intercept for each replicate in our dataset

(i.e. each individual recorded daily catch; zαrep[i] × σrep,, line 2) to explicitly model the

overdispersion of tsetse catches (see also S1 Statistics). In this analysis, a dummy variable

was assigned to each target under test except for Vest. ZF (Target1-3, line 2), and the lin-

ear model included a coefficient for each that estimated differences in catches from that

standard target (βtarget1-3, line 2). The linear model had a hierarchical structure to model

random intercepts for each sampling day and site in order to account for clustering in the

data, and a random intercept for each catch replicate as previously described (line 2).

PLOS NEGLECTED TROPICAL DISEASES Evaluating coloured targets to control riverine tsetse

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009463 June 21, 2021 5 / 22

https://doi.org/10.1371/journal.pntd.0009463


This was done using a non-centred parameterisation wherein the model estimated the

variance within a given cluster type (σday, σsite, σrep), and a z score for each member of a

cluster (zαday[i], zαsite[i], zαrep[i]). Such a parameterisation was necessary for efficient

model fitting (see also [11]). Bayesian analyses can incorporate ‘priors’ based upon previ-

ous knowledge and expectations, but in this analysis we used regularising priors only.

These are priors that helped the models to be efficiently fitted by indicating that extreme

values were unlikely, but provided no strong or directional expectations that would

impact the outcomes of the analysis. The distributions, means, and standard deviations

of the priors used for each parameter in this model are specified on lines 3 to 12. Model

fitting itself was carried out using the map2stan() function of the Rethinking package,

using three Markov chains with 10,000 iterations each. We report efficiency and conver-

gence statistics for these chains when we report these models: very low effective sample

sizes (Neffective) and R̂ >1.0 would indicate fitting problems, but none were apparent in

the reported analyses. Posterior predictive plots for model validation are provided in S1

Statistics.

We caught few tsetse during our experiments in Uganda, and recorded zero catches in 38%

of target replicates. Since zero catches might have resulted from there being no flies in the

vicinity of a target (structural zeroes), or from no flies being attracted to a target (sampling

zeroes), we applied a zero-inflated model in addition to a model like that described above. The

zero-inflated model had the following adjustment to the above form (the remaining priors

were identical and have not been duplicated here):

total catch � ZIPoissonðp; lÞ
logitðpÞ ¼ ap
logðlÞ ¼ aþ zarep½i� � srep þ zaday½i� � sday þ zasite½i� � ssite þ btarget1 � Target1þ btarget2 � Target2

ap � Normalð0; 1Þ

In this model, the probability of a zero catch being recorded is first estimated using a binary

logistic process representing the probability that there were no tsetse in the vicinity of a given

target on a given sampling day. Subsequent to this, an over-dispersed Poisson model is fitted

that is identical to that described above with the exception that only two Target dummy vari-

ables were included in this analysis since only three targets were tested in each Latin square

(line 3).

A fly photoreceptor signal-based analysis using informative priors. The putatively

improved fabrics tested in this work were designed rationally with that intention, and thus

prior knowledge clearly formed the basis for our work but was not represented in the above

analysis. The design of our violet fabric was based upon fly photoreceptor signals, which can

be calculated from fabric reflectance spectra, and provide a discrete set of colour metrics that

describe fabric colour properties relevant to flies [8–10]. We thus extended our analyses to

incorporate these aspects.

Prior to our work, a large dataset of G. f. fuscipes catches at 37 differently coloured Tiny Tar-

gets had been published, comprising 15 separate experiments conducted at the same Kenyan

study location as our experiments [4]. By calculating the fly photoreceptor signals that would

be elicited by the fabrics used in that study, we previously estimated the ways in which those

photoreceptor signals related to the tsetse catches reported, and these models were used to

guide the design of our violet fabric [8–10]. Thus, we had a clear prior expectation of how fly

photoreceptor signals would affect tsetse catch, based upon our earlier work and a large set of

pre-existing experimental data. We reconstructed those expectations for the current study by

fitting the following model to the data reported in that publication [4], generating probability
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distributions for the relevant parameters:

total catch � PoissonðlÞ

logðlÞ ¼ aþ logð10Þ þ zarep½i� � srep þ zaexpt½i� � sexpt þ bR7p � R7pþ bR7y � R7yþ bR8y � R8y

a � Normalð0; 10Þ

bR7p � Normalð0; 10Þ

bR7y � Normalð0; 10Þ

bR8y � Normalð0; 10Þ

zarep � Normalð0; 1Þ

zaexpt � Normalð0; 1Þ

srep � HalfNormalð0; 1Þ

sexpt � HalfNormalð0; 1Þ

The predictors R7p, R7y, and R8y are the three photoreceptor signals found to be most

influential upon tsetse attraction in an earlier analysis of these data [8–10] (here we have used

generic fly photoreceptor sensitivity functions, as recorded in Musca and Calliphora [12]).

Since the data available in the prior publication were totals across 10 sampling days per experi-

ment [4], an offset was included to transform predictions to a daily scale and a random inter-

cept for experiment (rather than site and day) was modelled. The priors here are regularising

only, as in the models described above.

The posterior distributions of the photoreceptor signal coefficients from this analysis (with

slightly inflated standard deviations) were then used as priors for a similar analysis of the data

from our two experiments in Kenya combined. Photoreceptor excitations for the fabrics we

tested were computed from their measured reflectance spectra (Fig 1) using the calculator pro-

vided with our earlier work [9]. For simplicity, we refer the reader to that work for a detailed

explanation of the calculations involved. The pertinent aspects of this analysis are as follows,

with the omitted priors remaining in the regularising forms described above:

total catch � PoissonðlÞ

logðlÞ ¼ aþ zarep½i� � srep þ zaday½i� � sday þ zasite½i� � ssite þ bR7p � R7pþ bR7y � R7yþ bR8y � R8y

bR7p � Normalð� 2:1; 0:5Þ

bR7y � Normalð2:1; 0:5Þ

bR8y � Normalð� 1:2; 0:5Þ

The posterior distributions of the photoreceptor signal coefficients from this analysis in turn

formed the priors for an analysis of the data from our experiment in Uganda using a model of the

above form, and a zero-inflated model. The pertinent modifications for the zero-inflated model

were as follows, and the stated priors were identical in the non-zero-inflated model:

total catch � ZIPoissonðp; lÞ

logitðpÞ ¼ ap
logðlÞ ¼ aþ zarep½i� � srep þ zaday½i� � sday þ zasite½i� � ssite þ bR7p � R7pþ bR7y � R7yþ bR8y � R8y

bR7p � Normalð� 2:0; 0:4Þ

bR7y � Normalð2:2; 0:5Þ

bR8y � Normalð� 0:9; 0:3Þ
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In this way, our analyses estimated the plausible distributions of model coefficients that are

consistent with all of our experimental data, as well as a larger set of data for the same species

published prior to our study [4].

Evaluating model effects through future catch predictions. The above models estimate

posterior probability distributions for each coefficient in the linear model that are consistent

with the specified priors and the data under analysis. These posterior distributions explicitly

represent uncertainty in model parameters. To evaluate each model, we simulated 10,000 new

catch replicates for the relevant target set by sampling randomly from the posterior distribu-

tions of the model’s coefficients. In addition, new z-scores for day, site, and replicate were ran-

domly generated for each, to simulate variation beyond the days, sites, and replicates sampled

in our experiments. Using these samples, we computed expected tsetse catches, λ, for each tar-

get. First, we evaluated the likelihood of target colour effects by computing expected catches

for the average catch replicate, that is, with the z-scores for each simulated catch replicate set

to zero so that variability in catches across replicates did not contribute to predictions. Next,

we evaluated the likelihood of observing a catch difference between targets at any given repli-

cate by computing expected catches using the randomly generated z-scores for each replicate

to incorporate the expected variability in catches. Based on these simulations, we compared

expected catches across pairs of targets at the same simulated site and on the same simulated

day, evaluating the probability that the expected catch of a given target would exceed that of

another. In this way, our predictions describe the probable effects of target colour on the aver-

age catch replicate, as well as the probability of one target outperforming another in any given

replicate, given the expected variability in catches around the average. The reader should be

aware that sampling variation across new intercepts for day, site, and replicate had consider-

able effect on the shape of the expected catch density functions we present in results. However,

median predicted catches and performance comparisons for different targets were consistent.

Since our analysis based on photoreceptor signals was intended to generalise patterns across

experiments and the two families of improved fabrics, rather than making predictions for the

actual targets tested, we constructed these for typical blue, ‘average Vestergaard’, and ‘average

violet’ fabrics. The reflectance spectra for the latter two hypothetical fabrics were generated by

averaging across those of the several fabrics within that family shown in Fig 1.

Results

An analysis of Tiny Target performance without informative priors

Tiny Targets in Kenya. Our first experiment compared catches at a typical blue polyester

target comparable to those tested by [4], and targets using the putatively improved Vestergaard

blue and violet fabrics (Fig 2A). A statistical model of these catches revealed that the plausible

distribution of the coefficient for the typical blue polyester target had its probability mass

below zero, indicating high certainty of lesser performance than the Vest. ZF target (Table 1).

Mean coefficients for the violet and Vest. SP23 prototype were slightly negative and their prob-

ability masses straddled zero, indicating uncertainty in performance relative to Vest. ZF, but

suggesting that these targets tended to perform slightly less well (Table 1). Also evident in this

model was relatively high catch variability across days and sites (σday and σsite), and additional

catch variability across the individual catch replicates (σrep) that was not explained by the other

predictors in the model (Table 1).

To evaluate these effects, we calculated the expected catch, λ, for 10,000 simulated target

catch replicates that captured uncertainty in model coefficients, and variation across sites,

days, and replicates (Table 2 and Fig 2B). Across these simulations, median expected catches

for typical blue (19.7) were less than those for Vest. ZF (29.7), Vest. SP23 (27.5), and violet
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Fig 2. Recorded and posterior predicted G. f. fuscipes catches based on experiments in Kenya. (A) The distribution

of recorded tsetse catches for the four target fabrics tested in experiment 1. (B) Probability density functions for 10,000

expected catches for the targets tested in experiment 1, computed using the posterior probabilities of model

coefficients from a Bayesian model of the data in panel A. (C) The distribution of recorded tsetse catches across the

four target fabrics tested in experiment 2. (D) Probability density functions for 10,000 expected catches for each target

tested in experiment 2, computed using the posterior probabilities of model coefficients from a Bayesian model of the

data in panel C. Boxes in panels A and C indicate the 25th, 50th, and 75th percentiles; whiskers extend to the most

extreme value, or to 1.5 � IQR with more extreme values plotted as points. Sample sizes are 16 catch observations per

target. In panels B and D, note that sampling variation across new intercepts for day, site, and replicate has
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(28.5), and the distributions of expected catches for those putatively improved fabrics were

similar (Fig 2B). To evaluate target colour effects independent of the estimated variability in

catches between replicates, we compared expected catches for the average catch replicate for

each target type at the same simulated site and on the same simulated day. From these compar-

isons it was deemed certain that the average expected catch of each putatively improved target

would exceed that of typical blue (Table 2). Among pairs of the putatively improved target fab-

rics it was marginally more likely that Vest. ZF would have the greater expected catch

(Table 2). We next expanded these predictions to incorporate variability in catches across rep-

licates, wherein the probability of one putatively improved fabric having a higher expected

catch than another at any given replicate was marginal, and the probability of one of these fab-

rics having a higher expected catch than typical blue was reduced to ca. 79–84% (Table 2, val-

ues in brackets).

Our second experiment tested a number of violet fabric prototypes against the Vest. ZF fab-

ric tested in our first experiment (Fig 2C). Among the violet fabrics, we expected that increas-

ing dye concentrations would result in increased attractiveness to tsetse, based upon our

previous analyses of fly photoreceptor signals [8,9]. Although produced using the same dye

and base fabric as the violet previously tested, these were produced on a small scale, which

resulted in the fabrics being more crinkled. Analysis of these data suggested that each violet

target had a positive coefficient (Table 3). The distribution of plausible values for this coeffi-

cient was almost entirely positive for violet 7% and violet 9% (Table 3), both of which had very

similar reflectance spectra to the violet tested in experiment 1 (Fig 1). Approaching one quarter

of the probability mass for the violet 4.5% coefficient was below zero, indicating greater uncer-

tainty in its effect (Table 3). There was, again, high variability in tsetse catches across days and

sites, and additional variability across catch replicates that was not explained by other predic-

tors in the model (Table 3).

Across 10,000 simulated catch replicates for each target based on this model, the median

expected catch for Vest. ZF was 17.9, and those for the violet fabrics were greater (violet 4.5%

= 19.7; violet 7% = 22.9; violet 9% = 22.0) (Fig 2D). Considering the average catch replicate at

the same simulated site and day, there was a 77–97% probability that the average expected

catch across replicates of a violet prototype target would exceed that at a Vest. ZF target

(Table 4), reversing the trend observed in analysis of our first experiment. This probability was

considerable effect on the shape of the plotted functions, but not the medians and performance comparisons stated in

text.

https://doi.org/10.1371/journal.pntd.0009463.g002

Table 1. A summary of posterior distributions for the coefficients estimated by analysis of experiment 1 data.

Mean SD 5.50% HPDI 94.50% HPDI Neffective R̂
α 3.39 0.36 2.85 3.92 8721 1

βTyp.Blue -0.42 0.12 -0.62 -0.22 15125 1

βVest.SP23(P) -0.08 0.12 -0.27 0.12 13876 1

βViolet -0.04 0.12 -0.23 0.15 14710 1

σday 0.32 0.09 0.20 0.47 9049 1

σsite 0.58 0.31 0.26 1.15 10821 1

σrep 0.28 0.05 0.21 0.36 8759 1

SD = standard deviation; HPDI = highest posterior density interval; Neffective (= the effective number of samples) and

R̂ are convergence and efficiency diagnostics for Markov chains used in model fitting.

https://doi.org/10.1371/journal.pntd.0009463.t001

PLOS NEGLECTED TROPICAL DISEASES Evaluating coloured targets to control riverine tsetse

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009463 June 21, 2021 10 / 22

https://doi.org/10.1371/journal.pntd.0009463.g002
https://doi.org/10.1371/journal.pntd.0009463.t001
https://doi.org/10.1371/journal.pntd.0009463


greatest (>90%) for the 7% and 9% violet prototypes, which had similar reflectance spectra to

the violet tested in our first experiment (see Fig 1), in agreement with our prior expectations.

However, as for our first experiment, when the additional variability in catches across repli-

cates was incorporated into these predictions, the probability of a greater expected catch at a

violet prototype target than a Vest. ZF target in any given replicate at the same day and site

was marginal (Table 4).

Tiny Targets in Uganda. Catches of tsetse during our third experiment in Uganda were

generally low and often zero (Fig 3A), so we applied both an over-dispersed Poisson model,

and a zero-inflated version of this model to account for replicates in which there may have

been no tsetse in the vicinity of a target (structural zeroes). In the zero-inflated model, struc-

tural zero catches were predicted in about 22% of target replicates. For both models, in com-

mon with experiments in Kenya, the coefficient for the violet target effect was positive and that

for the typical blue target negative, though both probability masses straddled zero indicating

some uncertainty in the magnitude and direction of these effects (Table 5). Both models evi-

denced high variability in tsetse catches across days and sites (Table 5). Although the zero-

inflated model performed less well as judged by information criteria (difference in WAIC =

+6.9, standard error of difference = 3.1), it contained less unexplained variability across repli-

cates (σrep) closer to that observed in our experiments in Kenya (Table 5).

Median expected catches across 10,000 simulated catch replicates for each target were 0.8

for typical blue, 1.2 for Vest. ZF, and 1.3 for violet based on the non-zero-inflated model, and

1.4 for typical blue, 1.6 for Vest. ZF, and 2.0 for violet based on the zero-inflated model

Table 2. Future target performance predicted by analysis of experiment 1 data.

Percentage of deployments in which expected catch exceeds. . .

Target (i) Typ. Blue (ii) Vest. ZF (iii) Vest. SP23 (P) (iv) Violet

Typ. Blue 0% (16%) 0% (21%) 0% (18%)

Vest. ZF 100% (84%) 73% (58%) 64% (54%)

Vest. SP23 (P) 100% (79%) 27% (42%) 39% (46%)

Violet 100% (82%) 36% (46%) 61% (54%)

Table shows the percentage of 10,000 simulated catches in which the expected catch (λ) of the target in the row

heading exceeded that in the column heading for the average catch replicate. Values in brackets indicate the same

comparison of catch predictions, but incorporate the additional variability in tsetse catches across replicates

estimated by the model.

https://doi.org/10.1371/journal.pntd.0009463.t002

Table 3. A summary of posterior distributions for the coefficients estimated by analysis of experiment 2 data.

Mean SD 5.50% HPDI 94.50% HPDI Neffective R̂
α 2.89 0.19 2.58 3.19 11470 1

βViolet4.5% 0.10 0.14 -0.12 0.32 16255 1

βViolet7% 0.25 0.14 0.04 0.47 15957 1

βViolet9% 0.21 0.14 -0.01 0.43 15828 1

σday 0.32 0.09 0.19 0.48 8900 1

σsite 0.38 0.14 0.21 0.64 11920 1

σrep 0.31 0.06 0.23 0.41 8078 1

SD = standard deviation; HPDI = highest posterior density interval; Neffective (= the effective number of samples) and

R̂ are convergence and efficiency diagnostics for Markov chains used in model fitting.

https://doi.org/10.1371/journal.pntd.0009463.t003
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excluding structural zeroes. Based on the average simulated catch replicate at the same simu-

lated site and day, the non-zero-inflated model predicted a�86% probability of a higher

expected catch at violet or Vest. ZF targets than at typical blue, but the difference between vio-

let and Vest. ZF targets was marginal (Table 6). The zero-inflated model predicted an 81%

probability of a higher expected catch at the violet than the typical blue target, but only a 64%

probability of a higher expected catch at Vest. ZF than typical blue (Table 6 and Fig 3B). In

addition, there was a 75% probability of a greater expected catch at violet than Vest. ZF

Table 4. Future target performance predicted by analysis of experiment 2 data.

Percentage of deployments in which expected catch exceeds. . .

Target (i) Vest. ZF (ii) Violet 4.5% (P) (iii) Violet 7% (P) (iv) Violet 9% (P)

Vest. ZF 23% (41%) 3% (29%) 7% (32%)

Violet 4.5% (P) 77% (59%) 13% (36%) 21% (40%)

Violet 7% (P) 97% (71%) 87% (64%) 62% (54%)

Violet 9% (P) 93% (68%) 79% (60%) 38% (46%)

Table shows the percentage of 10,000 simulated catches in which the expected catch (λ) of the target in the row

heading exceeded that in the column heading for the average catch replicate. Values in brackets indicate the same

comparison of catch predictions, but incorporate the additional variability in tsetse catches across replicates

estimated by the model.

https://doi.org/10.1371/journal.pntd.0009463.t004

Fig 3. Recorded and posterior predicted G. f. fuscipes catches based on the experiment in Uganda. (A) The

distribution of recorded tsetse catches across the three target fabrics tested. (B) Probability density functions for 10,000

expected catches for the same targets, computed using posterior probabilities of model coefficients from a Bayesian

model of catches in panel A. Predictions are from the zero-inflated model and exclude zero catches modelled to result

from a binary logistic process independent of target type. Boxes in panel A indicate the 25th, 50th, and 75th percentiles;

whiskers extend to the most extreme value, or to 1.5 � IQR with more extreme values plotted as points. Sample sizes are

17 catch observations for Vest. ZF and violet, 16 for typical blue. In panel B, note that sampling variation across new

intercepts for day, site, and replicate has considerable effect on the shape of the plotted functions, but not the medians

and performance comparisons stated in text.

https://doi.org/10.1371/journal.pntd.0009463.g003
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(Table 6). However, as with previous simulations, when between replicate catch variability was

incorporated into these predictions, only the probability of violet having a higher expected

catch than typical blue at any given target catch replicate remained at�70% (Table 6).

A fly photoreceptor signal-based analysis using informative priors

The above analyses by experiment suggest trends in target performance, but these were

obscured by high variability in tsetse catches, and were sometimes inconsistent between exper-

iments. Those analyses used regularising priors, which means that they took no account of

prior expectations of target performance, despite the fact that such expectations were overtly

Table 5. A summary of posterior distributions for the coefficients estimated by analysis of experiment 3 data

using (A) over-dispersed Poisson, and (B) zero-inflated over-dispersed Poisson models.

Mean SD 5.50% HPDI 94.50% HPDI Neffective R̂
(A)

α 0.15 0.63 -0.84 1.09 11715 1

βViolet 0.07 0.40 -0.56 0.69 17541 1

βTyp.Blue -0.45 0.43 -1.15 0.21 17626 1

σday 0.49 0.29 0.06 0.99 5642 1

σsite 0.82 0.44 0.28 1.63 14814 1

σrep 0.69 0.28 0.21 1.13 4981 1

(B)

αp -1.32 0.53 -2.22 -0.57 18872 1

α 0.41 0.59 -0.54 1.28 10362 1

βViolet 0.22 0.34 -0.33 0.77 18902 1

βTyp.Blue -0.14 0.40 -0.79 0.49 18987 1

σday 0.37 0.25 0.04 0.82 6306 1

σsite 0.79 0.43 0.27 1.57 16324 1

σrep 0.41 0.25 0.05 0.83 5369 1

SD = standard deviation; HPDI = highest posterior density interval; Neffective (= the effective number of samples) and

R̂ are convergence and efficiency diagnostics for Markov chains used in model fitting.

https://doi.org/10.1371/journal.pntd.0009463.t005

Table 6. Future target performance predicted by analysis of experiment 3 data using (A) over-dispersed Poisson,

and (B) zero-inflated over-dispersed Poisson models.

Percentage of deployments in which expected catch exceeds . . .

Target (i) Typ. Blue (ii) Vest. ZF (iii) Violet

(A)

Typ. Blue 14% (31%) 10% (30%)

Vest. ZF 86% (69%) 43% (48%)

Violet 90% (70%) 57% (52%)

(B)

Typ. Blue 36% (41%) 19% (30%)

Vest. ZF 64% (59%) 25% (36%)

Violet 81% (70%) 75% (64%)

Table shows the percentage of 10,000 simulated catches in which the expected catch (λ) of the target in the row

heading exceeded that in the column heading for the average catch replicate. Values in brackets indicate the same

comparison of catch predictions, but incorporate the additional variability in tsetse catches across replicates

estimated by the model.

https://doi.org/10.1371/journal.pntd.0009463.t006
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drawn from earlier work and informed the design of the targets tested [8–10]. We next took

advantage of the ability of Bayesian analyses to incorporate these prior expectations and con-

solidate patterns across experiments.

Flies possess five spectral classes of photoreceptor that provide the inputs to their visually

guided behaviour (Fig 4A). Relationships between calculated signals for these photoreceptors,

and numbers of tsetse attracted to targets in previous experiments, were the basis for develop-

ment of the violet fabrics tested in this work [8–10]. We therefore began by re-analysing the

total catches reported in a pre-existing dataset of G. f. fuscipes catches at coloured Tiny Targets

[4], to reconstruct probability distributions for the coefficients of calculated photoreceptor sig-

nals that could provide informative priors for use in the analysis of our new data (Table 7).

The posterior probability distributions of the photoreceptor signal coefficients from this

analysis informed the prior expectations for a single analysis incorporating both of our Kenya

experiments (Fig 4B). This analysis produced new posterior probability distributions for these

coefficients consistent with both our data and information in the specified priors (Table 8).

We used this model to simulate 10,000 deployments of a typical blue, ‘average Vestergaard

blue’, and ‘average violet’ Tiny Target (the latter two calculated by averaging the reflectance

spectra of the actual fabrics tested), incorporating the modelled variability across sites, days,

and replicates (Fig 4C). Again, median expected catches for average violet (24.6) and average

Vestergaard blue (21.9) exceeded that for typical blue (15.7). From these simulations, expected

catches for the average replicate at average violet and average Vestergaard blue targets were

deemed certain to exceed those at typical blue, and it was highly probable that that for average

violet would exceed that for average Vestergaard blue (Table 9). However, when between-rep-

licate catch variability was incorporated into these simulations, the advantage for violet over

Vestergaard blue was diluted and the probability that putatively improved fabrics would out-

perform typical blue fell to 79–86% (Table 9).

We next used the posterior probability distributions from this analysis to provide revised

prior expectations for an analysis of our Uganda experiment, consolidating all of our new data

with that published in the pre-existing study [4]. As in our initial analysis of that experiment, we

modelled these data both with and without zero-inflation that might have resulted from there

being no tsetse in the vicinity of any given target replicate. The results of this analysis evidenced

a weakening of the coefficients indicated in the priors, but the two models were comparable

(Table 10). We again used these models to simulate 10,000 deployments of a typical blue, aver-

age Vestergaard blue, and average violet Tiny Target, wherein median expected catches were

0.8 for typical blue, 1.1 for average Vestergaard blue, and 1.3 for average violet, based upon the

non-zero-inflated model, and 1.2 for typical blue, 1.6 for average Vestergaard blue, and 1.9 for

average violet based on the zero-inflated model and excluding structural zeroes (Fig 4D). Pre-

dictions of relative target performance based upon these simulations were similar to those in

the previous analysis and across both statistical models (Table 11). For the average catch repli-

cate at the same simulated site and day, both average Vestergaard blue and average violet targets

were certain to yield higher expected catches than typical blue, and it was moderately likely that

average violet would yield a higher expected catch than average Vestergaard blue (Table 11).

However, once between-replicate variability was incorporated into these predictions, the perfor-

mance advantage for average violet over average Vestergaard blue was marginal, and the proba-

bility that either would outperform typical blue fell to 69–82% (Table 11).

Discussion

In this work we evaluated the performance of putatively improved coloured fabrics for the

Tiny Targets used to control riverine tsetse, based upon new experimental trials in Kenya and
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Fig 4. Bayesian analysis of G. f. fuscipes catches using informative priors established from published data. (A) Flies

possess five classes of photoreceptor with characteristic spectral sensitivities [12], and the responses of these

photoreceptors to target fabrics provide the only inputs to visually guided behaviour. The responses of these

photoreceptors to each fabric can be calculated from the fabric’s reflectance spectrum and used as predictors of

attraction in statistical models of tsetse catches [8,9]. (B) Prior probabilities for coefficients relating calculated

photoreceptor responses to tsetse catches, based on analysis of data published in [4]. Only the three photoreceptors

deemed most influential in earlier work have been considered [8,9]. Plot shows random samples with the means and

standard deviations specified in methods. (C) Probability density functions for 10,000 expected catches computed for

typical blue, ‘average Vestergaard’, and ‘average violet’ targets based upon the posterior probabilities of model
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Uganda. Using a Bayesian statistical approach, we found strong evidence that expected catches

for future deployments of violet and Vestergaard blue targets were likely to exceed those for

typical blue polyester targets. Among these improved fabrics, our analyses suggest that

expected catches for average violet target replicates were moderately likely to exceed those for

Vestergaard blue, with a small difference in median expected catches of ca. +15% (range across

analyses: -4% to +28%). However, because variability in tsetse catches between replicates is

large, the probability that the expected catch for any given violet target replicate would exceed

that for a Vestergaard blue equivalent was marginal (46–71%).

Recently, we conducted tests of the same fabrics against savannah tsetse, using the large (2

m wide x 1 m high) targets recommended for their control [10]. We found that violet targets

often caught significantly more tsetse than typical blue polyester and black cotton standard

ones, whilst Vest. ZF blue targets did not attain significantly higher catches than black cotton

[10]. Thus, although no direct test was conducted, these data suggest that violet targets were

likely more attractive to these flies than Vest. ZF ones. Previous studies of tsetse attracted to

traps and targets have identified similar colour features as important in enhancing catches of

both savannah and riverine species [4,5,7,8,13]. Therefore, we anticipated that the relative

attractiveness of these fabrics to riverine tsetse would follow the trends for savannah species.

We evaluated this by making future catch predictions for the average catch replicate, ignoring

variability between replicates and focussing on uncertainty in target colour effects only. In the

majority of these analyses, the greater attractiveness of violet and Vest. ZF fabrics over a typical

blue like those that have been tested previously was very highly probable, though such an

advantage was not evident for Vest. ZF in the zero-inflated analysis of our third experiment. In

most analyses, expected catches for the average replicate deployment of violet fabrics were

moderately likely to exceed those for Vest. ZF, but the difference in median expected catches

was small and an opposite trend was indicated by our individual analysis of our first experi-

ment. Further, among our prototype violet fabrics in our second experiment, those with higher

dye concentrations were likely to achieve higher expected catches than that with a lower dye

coefficients generated from the priors in panel B, and recorded catches from experiments 1 and 2 in Kenya. (D)

Probability density functions for 10,000 expected catches computed for typical blue, ‘average Vestergaard’, and

‘average violet’ targets based upon the posterior probabilities of coefficients for the model described in panel C, and

recorded catches for experiment 3 conducted in Uganda. Predictions are from the zero-inflated model and exclude

zero catches modelled to result from a binary logistic process independent of target type. Data in panel A are as used in

[9] and based on [12]. In panels C and D, note that sampling variation across new intercepts for day, site, and replicate

has considerable effect on the shape of the plotted functions, but not the medians and performance comparisons stated

in text.

https://doi.org/10.1371/journal.pntd.0009463.g004

Table 7. A summary of posterior distributions for the coefficients estimated by analysis of the data collected by

[4].

Mean SD 5.50% HPDI 94.50% HPDI Neffective R̂
α 3.65 0.14 3.43 3.88 8835 1

βR7p -2.10 0.19 -2.41 -1.79 9639 1

βR7y 2.09 0.30 1.60 2.57 8571 1

βR8y -1.21 0.25 -1.61 -0.81 9185 1

σexpt 0.19 0.05 0.13 0.28 6993 1

σrep 0.17 0.02 0.14 0.20 7357 1

SD = standard deviation; HPDI = highest posterior density interval; Neffective (= the effective number of samples) and

R̂ are convergence and efficiency diagnostics for Markov chains used in model fitting.

https://doi.org/10.1371/journal.pntd.0009463.t007
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concentration, aligning with our prior expectations from analyses of fly photoreceptor signals.

Thus, our data are broadly consistent with a similar ordering of colour preference for G. f. fus-
cipes as was seen for savannah species, albeit that the magnitude of expected catch difference

between violet and Vestergaard blue targets was small.

Our analysis of expected catches for average target replicates did not account for the high

variability in catches between replicates. When this variability was incorporated into predic-

tions, the expected catch at a given violet or Vest. ZF target replicate retained a moderate prob-

ability of exceeding that at a typical blue replicate on the same day and at the same site. Thus,

even given the high variability in tsetse catches, these improved fabrics appear to have a rela-

tively clear performance advantage over typical blue. However, the probability that the

expected catch for a given violet target replicate would exceed that for a Vest. ZF equivalent

settled closer to random chance. In this case, the high variability in catches swamped the rela-

tively small difference between median expected catches. Although we maintain that Bayesian

statistics provide the most useful way to interrogate our data, and allowed that understanding

to be consolidated across multiple experiments, we note that separate analyses of each experi-

ment using frequentist statistical methods aligned with this finding: the catches of violet and

Vest. ZF targets never differed significantly, but these catches did significantly exceed those of

typical blue in our first experiment (though not in our third experiment where extremely low

numbers of flies were caught and the median catches for all targets were� 2) (See S1 Statis-

tics). Thus, the high variability in expected tsetse catches appears to obscure the colour effects

Table 8. A summary of posterior distributions for the coefficients estimated by analysis of new data collected in

Kenya, incorporating priors informed by analysis of previously published data [4].

Mean SD 5.50% HPDI 94.50% HPDI Neffective R̂
α 2.96 0.34 2.41 3.51 14334 1

βR7p -1.97 0.37 -2.57 -1.38 22614 1

βR7y 2.22 0.47 1.47 2.97 21834 1

βR8y -0.89 0.25 -1.30 -0.49 18578 1

σday 0.32 0.06 0.23 0.41 8699 1

σsite 0.40 0.11 0.26 0.60 9421 1

σrep 0.28 0.03 0.23 0.34 10319 1

SD = standard deviation; HPDI = highest posterior density interval; Neffective (= the effective number of samples) and

R̂ are convergence and efficiency diagnostics for Markov chains used in model fitting.

https://doi.org/10.1371/journal.pntd.0009463.t008

Table 9. Future target performance predicted by analysis of new data collected in Kenya, incorporating priors

informed by analysis of previously published data [4].

Percentage of deployments in which expected catch exceeds . . .

Target (i) Typ. Blue (ii) ‘Ave. Vest.’ (iii) ‘Ave. violet’

Typ. Blue 0% (21%) 0% (14%)

‘Average Vest.’ 100% (79%) 4% (39%)

‘Average violet’ 100% (86%) 96% (61%)

Table shows the percentage of 10,000 simulated catches in which the expected catch (λ) of the target in the row

heading exceeded that in the column heading for the average catch replicate. Values in brackets indicate the same

comparison of catch predictions, but incorporate the additional variability in tsetse catches across replicates

estimated by the model.

https://doi.org/10.1371/journal.pntd.0009463.t009
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and contributes to the discrepancy in findings versus those for savannah species [10]. We sug-

gest that this high variability may be a feature of Tiny Target deployments against riverine spe-

cies, since those species are less discriminating than savannah tsetse over targets as indicated

by their relative indifference to target size [14]. This may be because riverine tsetse are less dis-

criminating over potential hosts due to the way in which their search behaviour is constrained

Table 10. A summary of posterior distributions for the coefficients estimated by analysis of new data collected in

Uganda, incorporating priors from the analysis of data collected in Kenya that itself used informative priors.

Coefficients are displayed for (A) over-dispersed Poisson, and (B) zero-inflated over-dispersed Poisson models.

Mean SD 5.50% HPDI 94.50% HPDI Neffective R̂
(A)

α 0.03 0.71 -1.11 1.14 12101 1

βR7p -2.01 0.39 -2.62 -1.39 37770 1

βR7y 2.20 0.49 1.42 2.98 32072 1

βR8y -0.90 0.29 -1.36 -0.44 42201 1

σday 0.51 0.30 0.07 1.00 4602 1

σsite 0.82 0.43 0.29 1.62 15675 1

σrep 0.60 0.27 0.15 1.03 3965 1

(B)

αp -1.36 0.53 -2.26 -0.59 17950 1

α 0.37 0.71 -0.73 1.47 11457 1

βR7p -1.95 0.39 -2.57 -1.33 33030 1

βR7y 2.21 0.49 1.43 2.99 26294 1

βR8y -0.90 0.28 -1.35 -0.45 33198 1

σday 0.37 0.25 0.04 0.81 6320 1

σsite 0.81 0.43 0.29 1.60 14102 1

σrep 0.37 0.23 0.04 0.77 6266 1

SD = standard deviation; HPDI = highest posterior density interval; Neffective (= the effective number of samples) and

R̂ are convergence and efficiency diagnostics for Markov chains used in model fitting.

https://doi.org/10.1371/journal.pntd.0009463.t010

Table 11. Future target performance estimated by analysis of new data collected in Uganda, incorporating priors

from the analysis of data collected in Kenya that itself used informative priors. Predictions are displayed for (A)

over-dispersed Poisson, and (B) zero-inflated over-dispersed Poisson models.

Percentage of deployments in which expected catch exceeds . . .

Target (i) Typ. Blue (ii) ‘Ave. Vest.’ (iii) ‘Ave. violet’

(A)

Typ. Blue 0% (32%) 0% (27%)

‘Average Vest.’ 100% (69%) 12% (42%)

‘Average violet’ 100% (73%) 88% (58%)

(B)

Typ. Blue 0% (23%) 0% (18%)

‘Average Vest.’ 100% (77%) 12% (38%)

‘Average violet’ 100% (82%) 88% (62%)

Table shows the percentage of 10,000 simulated catches in which the expected catch (λ) of the target in the row

heading exceeded that in the column heading for the average catch replicate. Values in brackets indicate the same

comparison of catch predictions, but incorporate the additional variability in tsetse catches across replicates

estimated by the model.

https://doi.org/10.1371/journal.pntd.0009463.t011
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by habitat [14,15]. The high variability in riverine tsetse catches at Tiny Targets may have

important ramifications for the optimisation of these devices, since it appears to impose a limit

on the degree to which target performance can be improved.

It has also been proposed that divergence in opsin sequences across tsetse species may lead

to differences in phototoreceptor sensitivity, and thus, colour-guided behaviour [16]. Conceiv-

ably, this could contribute to the weaker trends in relative target attractiveness seen for riverine

tsetse in this study, versus those for savannah tsetse in previous work [10]. However, whether

or not the quantified divergence in opsin sequences leads to meaningful differences in photo-

receptor spectral sensitivity remains to be seen. Divergence in opsin sequences between tsetse

species was much less than that between those species and Musca domestica [16], yet

electrophysiological study found little difference between the spectral sensitivities of four of

the five main photoreceptor types between Glossina morsitans and M. domestica [17]. How-

ever, the largest sequence divergence occurs for opsin Rh5 which is expressed in the blue-sen-

sitive R8p photoreceptor class (see Fig 4A) [16], and that photoreceptor type has never been

successfully recorded from in tsetse [17]. For this reason, a Musca-like R8p sensitivity function

was used in previous models explaining tsetse catches based on photoreceptor signals, where

its response proved not to be an important predictor of attraction [8,9]. Therefore, it remains

to be seen whether the spectral sensitivity of the R8p photoreceptor varies across tsetse species,

and between those species andM. domestica, and whether that photoreceptor makes an impor-

tant contribution to attraction. Electrophysiological and field experimentation, and models of

tsetse behaviour based upon photoreceptor signals, are required to address this problem.

In developing the fabrics tested in this work we focussed on fabric colour properties, quan-

tified from a fly’s eye view using calculated fly photoreceptor signals [8–10]. Many biting flies

are most attracted to darker objects and those reflecting blue wavelengths, and least attracted

to objects that reflect UV and green wavelengths [4,5,7,18,19]. This is likely to be because,

although blue objects are rare in the natural environment, they activate the same photorecep-

tor mechanisms that would normally discriminate the reflectance spectra of potential hosts

from a background of green leaves [8,13,18]. But in addition to colour, the shiny surface tex-

ture of modern synthetic fabrics may also influence the attraction of biting flies [20–22]. For

tabanids, polarised reflectance from shiny surfaces is important in the location of water bodies

for egg laying and mating [22], and could aid in the discrimination of dark, shiny-furred hosts

from their background [23]. Within the tabanid visual system, colour and polarisation sensa-

tion appear to be confounded because a blue-sensitive photoreceptor (analogous to R8p; see.

Fig 4A), and a UV-sensitive photoreceptor (analogous to R7p) also differ in the plane of polar-

ised light to which they are most sensitive [24]. As such, both colour and polarisation features

might activate the same photoreceptor opponent signals, leading to the suggestion that the

blue preference of these flies may be a by-product of this polarotactic mechanism [24]. Tsetse

differ markedly to tabanids in that the high surface shininess of synthetic fabrics actually

decreases catches [20,21]; and although some tsetse photoreceptors that contribute to colour

vision are sensitive to the plane of polarised light [17], there is not yet evidence for opposing

preferences among opponent pairs as was found for tabanids. Our violet and typical blue fab-

rics used the same base polyester as a deliberate control for surface texture, and the observed

catch differences between these here, and for savannah tsetse [10], must be attributable to their

colour properties. However, the Vestergaard blue fabrics had a noticeably more coarse and less

shiny surface, and that may have enhanced their relative attractiveness to tsetse and obscured

the expected advantage for violet fabrics (c.f. [20]). In support of this, our unset and relatively

more crinkled violet 7% and 9% prototypes achieved the greatest performance increments

over Vest. ZF, whilst our set violet fabric with a near identical reflectance spectrum performed
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more similarly to Vest. ZF. It is possible that violet dyes applied to the more textured Vester-

gaard base polyester would combine the advantages of both fabrics.

Our data provide evidence that improved polyester fabrics have indeed increased Tiny Tar-

get performance against riverine tsetse versus typical blues like those tested in earlier work [4].

The available evidence suggests that violet fabrics may be more attractive to both riverine and

savannah tsetse than Vest. ZF ones, but that the high variability in riverine tsetse catches at

Tiny Targets means that the current fabrics are likely to perform similarly when deployed in

this context. Thus, we do not advocate a switch from Vestergaard ZeroFly blue to our current

violet fabric for the sole purpose of improving Tiny Target catches. However, should a general

purpose fabric for the effective control of both riverine and savannah species using both large

and Tiny Target configurations be sought, we suggest that violet is the best overall choice.

Finally, we caution practitioners and researchers that not all blue or violet materials are the

same from a fly’s point of view, and that choices should be made based on reflectance spectra

or fly-specific colour metrics, rather than colour appearance to a human observer [8,9].
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