914 research outputs found
Recurrent nocturnal hypoglycaemia as a cause of morning fatigue in treated Addison’s disease – Favourable response to dietary management: A case report
Background: Addison’s disease, or primary adrenal insufficiency, is often associated with reduced well-being and fatigue despite use of currently recommended adrenal hormone replacement. Hypoglycaemia is a known manifestation of glucocorticoid deficiency, but is generally considered rare in adults and not relevant to troubling ongoing symptoms in patients with Addison’s disease.
Case presentation: A 43 year old woman with a three year history of Addison’s disease complained of severe morning fatigue and headaches, despite standard glucocorticoid replacement therapy in the form of thrice daily hydrocortisone and mineralocorticoid replacement with fludrocortisone. Alternative glucocorticoid replacement regimens and the addition of dehydroepiandrosterone replacement therapy had no effect. Nocturnal hypoglycaemia was suspected and a 4-day continuous glucose monitor system (CGMS) revealed hypoglycaemia (interstitial glucose \u3c 2.2mmol/L) between 0200–0400 h on 3 of 4 days. The patient was counselled to take an evening snack designed to ensure slow absorption of ingested carbohydrates. Nocturnal hypoglycaemia was then absent on follow up CGMS assessment. The patient noted a marked symptomatic improvement in morning symptoms, but with persistent fatigue during the day.
Conclusion: Currently, the best strategy for control of non-specific symptoms in treated Addison’s disease is unknown, but it may be that investigation for hypoglycaemia and treatment, where necessary, could assist some sufferers to achieve improved wellbeing. A systematic study of this phenomenon in Addison’s disease is required
A Sweet Kid
I wait anxiously in the United terminal sipping a cup of coffee and feeling ungrounded. My nephew’s flight from Baltimore is late because of a severe weather system over the Midwest. My sister Kat tells me that Justin has become very selfish, even for a teenager, and that he lies and constantly tries to manipulate
Training in Citizenship
It is my object to give attention, in this thesis, to the discussion of the development of citizenship of our American youth. It is upon this phase of education that our future success as a nation rests. We all sense the fact that there is something wrong with the citizenship of these modern times. Each generation is duty bound to take care of its own age and we must not sidestep ours. The children of today will be the men and women of tomorrow, and by our caring for this generation, we of necessity influence all time to come
Diagnostic and Remedial Reading in the Intermediate Grades
The scientific study of reading problems began in the laboratories of Europe about the middle of the nineteenth century. The motive for these studies was the interest in the psychological processes involved in reading. Prior to 1900 most of the investigations were made in Germany and France. Since that date scientific interest in reading has increased so rapidly in this country that the United States now surpasses all other countries in productive work in this field
The selective phosphodiesterase 4 inhibitor roflumilast and phosphodiesterase 3/4 inhibitor pumafentrine reduce clinical score and TNF expression in experimental colitis in mice.
The specific inhibition of phosphodiesterase (PDE)4 and dual inhibition of PDE3 and PDE4 has been shown to decrease inflammation by suppression of pro-inflammatory cytokine synthesis. We examined the effect of roflumilast, a selective PDE4 inhibitor marketed for severe COPD, and the investigational compound pumafentrine, a dual PDE3/PDE4 inhibitor, in the preventive dextran sodium sulfate (DSS)-induced colitis model. The clinical score, colon length, histologic score and colon cytokine production from mice with DSS-induced colitis (3.5% DSS in drinking water for 11 days) receiving either roflumilast (1 or 5 mg/kg body weight/d p.o.) or pumafentrine (1.5 or 5 mg/kg/d p.o.) were determined and compared to vehicle treated control mice. In the pumafentrine-treated animals, splenocytes were analyzed for interferon-γ (IFNγ) production and CD69 expression. Roflumilast treatment resulted in dose-dependent improvements of clinical score (weight loss, stool consistency and bleeding), colon length, and local tumor necrosis factor-α (TNFα) production in the colonic tissue. These findings, however, were not associated with an improvement of the histologic score. Administration of pumafentrine at 5 mg/kg/d alleviated the clinical score, the colon length shortening, and local TNFα production. In vitro stimulated splenocytes after in vivo treatment with pumafentrine showed a significantly lower state of activation and production of IFNγ compared to no treatment in vivo. These series of experiments document the ameliorating effect of roflumilast and pumafentrine on the clinical score and TNF expression of experimental colitis in mice
What have transgenic and knockout animals taught us about respiratory disease?
Over the past decade there has been a significant shift to the use of murine models for investigations into the molecular basis of respiratory diseases, including asthma and chronic obstructive pulmonary disease. These models offer the exciting prospect of dissecting the complex interaction between cytokines, chemokines and growth related peptides in disease pathogenesis. Furthermore, the receptors and the intracellular signalling pathways that are subsequently activated are amenable for study because of the availability of monoclonal antibodies and techniques for targeted gene disruption and gene incorporation for individual mediators, receptors and proteins. However, it is clear that extrapolation from these models to the human condition is not straightforward, as reflected by some recent clinical disappointments. This is not necessarily a problem with the use of mice itself, but results from our continued ignorance of the disease process and how to improve the modelling of complex interactions between different inflammatory mediators that underlie clinical pathology. This review highlights some of the strengths and weaknesses of murine models of respiratory disease
De novo compartment deconvolution and weight estimation of tumor samples using DECODER
Tumors are mixtures of different compartments. While global gene expression analysis profiles the average expression of all compartments in a sample, identifying the specific contribution of each compartment remains a challenge. With the increasing recognition of the importance of non-neoplastic components, the ability to breakdown the gene expression contribution of each is critical. Here, we develop DECODER, an integrated framework which performs de novo deconvolution and single-sample compartment weight estimation. We use DECODER to deconvolve 33 TCGA tumor RNA-seq data sets and show that it may be applied to other data types including ATAC-seq. We demonstrate that it can be utilized to reproducibly estimate cellular compartment weights in pancreatic cancer that are clinically meaningful. Application of DECODER across cancer types advances the capability of identifying cellular compartments in an unknown sample and may have implications for identifying the tumor of origin for cancers of unknown primary
UV activation of polymeric high aspect ratio microstructures: Ramifications in antibody surface loading for circulating tumor cell selection
The need to activate thermoplastic surfaces using robust and efficient methods has been driven by the fact that replication techniques can be used to produce microfluidic devices in a high production mode and at low cost, making polymer microfluidics invaluable for in vitro diagnostics, such as circulating tumor cell (CTC) analysis, where device disposability is critical to mitigate artifacts associated with sample carryover. Modifying the surface chemistry of thermoplastic devices through activation techniques can be used to increase the wettability of the surface or to produce functional scaffolds to allow for the covalent attachment of biologics, such as antibodies for CTC recognition. Extensive surface characterization tools were used to investigate UV activation of various surfaces to produce uniform and high surface coverage of functional groups, such as carboxylic acids in microchannels of different aspect ratios. We found that the efficiency of the UV activation process is highly dependent on the microchannel aspect ratio and the identity of the thermoplastic substrate. Colorimetric assays and fluorescence imaging of UV-activated microchannels following EDC/NHS coupling of Cy3-labeled oligonucleotides indicated that UV-activation of a PMMA microchannel with an aspect ratio of ???3 was significantly less efficient toward the bottom of the channel compared to the upper sections. This effect was a consequence of the bulk polymer's damping of the modifying UV radiation due to absorption artifacts. In contrast, this effect was less pronounced for COC. Moreover, we observed that after thermal fusion bonding of the device's cover plate to the substrate, many of the generated functional groups buried into the bulk rendering them inaccessible. The propensity of this surface reorganization was found to be higher for PMMA compared to COC. As an example of the effects of material and microchannel aspect ratios on device functionality, thermoplastic devices for the selection of CTCs from whole blood were evaluated, which required the immobilization of monoclonal antibodies to channel walls. From our results, we concluded the CTC yield and purity of isolated CTCs were dependent on the substrate material with COC producing the highest clinical yields for CTCs as well as better purities compared to PMMA.close9
- …
