84 research outputs found

    In Vitro Cell Models for Ophthalmic Drug Development Applications

    Get PDF
    © Sara Shafaie et al. 2016; Published by Mary Ann Liebert, Inc. This Open Access article is distributed under the terms of the Creative Commons License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.Tissue engineering is a rapidly expanding field that aims to establish feasible techniques to fabricate biologically equivalent replacements for diseased and damaged tissues/organs. Emerging from this prospect is the development of in vitro representations of organs for drug toxicity assessment. Due to the ever-increasing interest in ocular drug delivery as a route for administration as well as the rise of new ophthalmic therapeutics, there is a demand for physiologically accurate in vitro models of the eye to assess drug delivery and safety of new ocular medicines. This review summarizes current existing ocular models and highlights the important factors and limitations that need to be considered during their use.Peer reviewe

    Epithelial-Mesenchymal Transition and Senescence in the Retinal Pigment Epithelium of NFE2L2/PGC-1 alpha Double Knock-Out Mice

    Get PDF
    Age-related macular degeneration (AMD) is the most prevalent form of irreversible blindness worldwide in the elderly population. In our previous studies, we found that deficiencies in the nuclear factor, erythroid 2 like 2 (NFE2L2) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1 alpha) genes caused AMD-like pathological phenotypes in mice. In the present work, we show hijacked epithelial-mesenchymal transition (EMT) due to the common loss of PGC-1 alpha and NFE2L2 (double knock-out, dKO) genes in aged animals. The implanted area was assessed by histology, immunohistochemistry and transmission electron microscopy. Confocal microscopy revealed altered regions in the filamentous actin ring. This contrasted with hexagonal RPE morphology in wild-type mice. The ultrastructural RPE features here illustrated loss of apical microvilli, alteration of cell-cell contact, loss of basal in-folding with deposits on Bruch's membrane, and excessive lipofuscin deposition in dKO samples. We also found the expression of epithelial-mesenchymal transition transcription factors, such as Snail, Slug, collagen 1, vimentin and OB-cadherin, to be significantly different in dKO RPEs. An increased immunoreactivity of senescence markers p16, DEC1 and HMGB1 was also noted. These findings suggest that EMT and senescence pathways may intersect in the retinas of dKO mice. Both processes can be activated by damage to the RPE, which may be caused by increased oxidative stress resulting from the absence of NFE2L2 and PGC-1 alpha genes, important for antioxidant defense. This dKO model may provide useful tools for studying AMD pathogenesis and evaluating novel therapies for this disease

    Single-Cell Epigenomics and Functional Fine-Mapping of Atherosclerosis GWAS Loci

    Get PDF
    Rationale: Genome-wide association studies have identified hundreds of loci associated with coronary artery disease (CAD). Many of these loci are enriched in cisregulatory elements but not linked to cardiometabolic risk factors nor to candidate causal genes, complicating their functional interpretation. Objective: Single-nucleus chromatin accessibility profiling of the human atherosclerotic lesions was used to investigate cell type-specific patterns of cisregulatory elements, to understand transcription factors establishing cell identity, and to interpret CAD-relevant, noncoding genetic variation. Methods and Results: We used single-nucleus ATAC-seq (assay for transposase-accessible chromatin with sequencing) to generate DNA accessibility maps in >7000 cells derived from human atherosclerotic lesions. We identified 5 major lesional cell types including endothelial cells, smooth muscle cells, monocyte/macrophages, natural killer/T cells, and B cells and further investigated subtype characteristics of macrophages and smooth muscle cells transitioning into fibromyocytes. We demonstrated that CAD-associated genetic variants are particularly enriched in endothelial and smooth muscle cell-specific open chromatin. Using single-cell coaccessibility and cis-expression quantitative trait loci information, we prioritized putative target genes and candidate regulatory elements for approximate to 30% of all known CAD loci. Finally, we performed genome-wide experimental fine-mapping of the CAD variants identified in genome-wide association studies using epigenetic quantitative trait loci analysis in primary human aortic endothelial cells and self-transcribing active regulatory region sequencing (STARR-Seq) massively parallel reporter assay in smooth muscle cells. This analysis identified potential causal single-nucleotide polymorphisms (SNPs) and the associated target gene for over 30 CAD loci. We present several examples where the chromatin accessibility and gene expression could be assigned to one cell type predicting the cell type of action for CAD loci. Conclusions: These findings highlight the potential of applying single-nucleus ATAC-seq to human tissues in revealing relative contributions of distinct cell types to diseases and in identifying genes likely to be influenced by noncoding genome-wide association study variants.</p

    Imaging of Disease Dynamics during Meningococcal Sepsis

    Get PDF
    Neisseria meningitidis is a human pathogen that causes septicemia and meningitis with high mortality. The disease progression is rapid and much remains unknown about the disease process. The understanding of disease development is crucial for development of novel therapeutic strategies and vaccines against meningococcal disease. The use of bioluminescent imaging combined with a mouse disease model allowed us to investigate the progression of meningococcal sepsis over time. Injection of bacteria in blood demonstrated waves of bacterial clearance and growth, which selected for Opa-expressing bacteria, indicating the importance of this bacterial protein. Further, N. meningitidis accumulated in the thyroid gland, while thyroid hormone T4 levels decreased. Bacteria reached the mucosal surfaces of the upper respiratory tract, which required expression of the meningococcal PilC1 adhesin. Surprisingly, PilC1 was dispensable for meningococcal growth in blood and for crossing of the blood-brain barrier, indicating that the major role of PilC1 is to interact with mucosal surfaces. This in vivo study reveals disease dynamics and organ targeting during meningococcal disease and presents a potent tool for further investigations of meningococcal pathogenesis and vaccines in vivo. This might lead to development of new strategies to improve the outcome of meningococcal disease in human patients

    International links between Streptococcus pneumoniae vaccine serotype 4 sequence type (ST) 801 in Northern European shipyard outbreaks of invasive pneumococcal disease

    Get PDF
    Background: Pneumococcal disease outbreaks of vaccine preventable serotype 4 sequence type (ST)801 in shipyards have been reported in several countries. We aimed to use genomics to establish any international links between them. Methods: Sequence data from ST801-related outbreak isolates from Norway (n = 17), Finland (n = 11) and Northern Ireland (n = 2) were combined with invasive pneumococcal disease surveillance from the respective countries, and ST801-related genomes from an international collection (n = 41 of > 40,000), totalling 106 genomes. Raw data were mapped and recombination excluded before phylogenetic dating. Results: Outbreak isolates were relatively diverse, with up to 100 SNPs (single nucleotide polymorphisms) and a common ancestor estimated around the year 2000. However, 19 Norwegian and Finnish isolates were nearly indistinguishable (0–2 SNPs) with the common ancestor dated around 2017. Conclusion: The total diversity of ST801 within the outbreaks could not be explained by recent transmission alone, suggesting that harsh environmental and associated living conditions reported in the shipyards may facilitate invasion of colonising pneumococci. However, near identical strains in the Norwegian and Finnish outbreaks does suggest that transmission between international shipyards also contributed to those outbreaks. This indicates the need for improved preventative measures in this working population including pneumococcal vaccination

    Serotype distribution of remaining pneumococcal meningitis in the mature PCV10/13 period: Findings from the PSERENADE Project

    Get PDF
    Pneumococcal conjugate vaccine (PCV) introduction has reduced pneumococcal meningitis incidence. The Pneumococcal Serotype Replacement and Distribution Estimation (PSERENADE) project described the serotype distribution of remaining pneumococcal meningitis in countries using PCV10/13 for least 5-7 years with primary series uptake above 70%. The distribution was estimated using a multinomial Dirichlet regression model, stratified by PCV product and age. In PCV10-using sites (N = 8; cases = 1141), PCV10 types caused 5% of cases <5 years of age and 15% among ≥5 years; the top serotypes were 19A, 6C, and 3, together causing 42% of cases <5 years and 37% ≥5 years. In PCV13-using sites (N = 32; cases = 4503), PCV13 types caused 14% in <5 and 26% in ≥5 years; 4% and 13%, respectively, were serotype 3. Among the top serotypes are five (15BC, 8, 12F, 10A, and 22F) included in higher-valency PCVs under evaluation. Other top serotypes (24F, 23B, and 23A) are not in any known investigational product. In countries with mature vaccination programs, the proportion of pneumococcal meningitis caused by vaccine-in-use serotypes is lower (≤26% across all ages) than pre-PCV (≥70% in children). Higher-valency PCVs under evaluation target over half of remaining pneumococcal meningitis cases, but questions remain regarding generalizability to the African meningitis belt where additional data are needed

    Common Inflammation-Related Candidate Gene Variants and Acute Kidney Injury in 2647 Critically Ill Finnish Patients

    Get PDF
    Acute kidney injury (AKI) is a syndrome with high incidence among the critically ill. Because the clinical variables and currently used biomarkers have failed to predict the individual susceptibility to AKI, candidate gene variants for the trait have been studied. Studies about genetic predisposition to AKI have been mainly underpowered and of moderate quality. We report the association study of 27 genetic variants in a cohort of Finnish critically ill patients, focusing on the replication of associations detected with variants in genes related to inflammation, cell survival, or circulation. In this prospective, observational Finnish Acute Kidney Injury (FINNAKI) study, 2647 patients without chronic kidney disease were genotyped. We defined AKI according to Kidney Disease: Improving Global Outcomes (KDIGO) criteria. We compared severe AKI (Stages 2 and 3, n = 625) to controls (Stage 0, n = 1582). For genotyping we used iPLEX(TM) Assay (Agena Bioscience). We performed the association analyses with PLINK software, using an additive genetic model in logistic regression. Despite the numerous, although contradictory, studies about association between polymorphisms rs1800629 in TNFA and rs1800896 in IL10 and AKI, we found no association (odds ratios 1.06 (95% CI 0.89-1.28, p = 0.51) and 0.92 (95% CI 0.80-1.05, p = 0.20), respectively). Adjusting for confounders did not change the results. To conclude, we could not confirm the associations reported in previous studies in a cohort of critically ill patients

    The Feasibility of Input-Output Analysis in the Novgorod Region

    No full text

    Metsäsektorin uusi työllisyys edellyttää vahvaa yrittäjyyttä (alakerta)

    No full text
    • …
    corecore