255 research outputs found

    Stabilization of dipole solitons in nonlocal nonlinear media

    Full text link
    We address the stabilization of dipole solitons in nonlocal nonlinear materials by two different approaches. First, we study the properties of such solitons in thermal nonlinear media, where the refractive index landscapes induced by laser beams strongly depend on the boundary conditions and on the sample geometry. We show how the sample geometry impacts the stability of higher-order solitons in thermal nonlinear media and reveal that dipole solitons can be made dynami-cally stable in rectangular geometries in contrast to their counterparts in thermal samples with square cross-section. Second, we discuss the impact of the saturation of the nonlocal nonlinear response on the properties of multipole solitons. We find that the saturable response also stabi-lizes dipole solitons even in symmetric geometries, provided that the input power exceeds a criti-cal value.Comment: 29 pages, 8 figures, to appear in Phys. Rev.

    Vortex soliton tori with multiple nested phase singularities in dissipative media

    Full text link
    We show the existence of stable two- and three-dimensional vortex solitons carrying multiple, spatially separated, single-charge topological dislocations nested around a vortex-ring core. Such new nonlinear states are supported by elliptical gain landscapes in focusing nonlinear media with two-photon absorption. The separation between the phase dislocations is dictated mostly by the geometry of gain landscape and it only slightly changes upon variation of the gain or absorption strength.Comment: 17 pages, 5 figures, to appear in Physical Review

    Enhanced soliton interactions by inhomogeneous nonlocality and nonlinearity

    Full text link
    We address the interactions between optical solitons in the system with longitudinally varying nonlocality degree and nonlinearity strength. We consider a physical model describing light propagation in nematic liquid crystals featuring a strongly nonlocal nonlinear response. We reveal that the variation of the nonlocality and nonlinearity along the propagation direction can substantially enhance or weaken the interaction between out-of-phase solitons. This phenomenon manifests itself as a slowdown or acceleration of the soliton collision dynamics in one-dimensional geometries or of the soliton spiraling rate in bulk media. Therefore, one finds that by engineering the nonlocality and nonlinearity variation rate one can control the output soliton location.Comment: 22 pages, 5 figures, to appear in Physical Review

    Stable spatiotemporal solitons in Bessel optical lattices

    Full text link
    We investigate the existence and stability of three-dimensional (3D) solitons supported by cylindrical Bessel lattices (BLs) in self-focusing media. If the lattice strength exceeds a threshold value, we show numerically, and using the variational approximation, that the solitons are stable within one or two intervals of values of their norm. In the latter case, the Hamiltonian-vs.-norm diagram has a "swallowtail" shape, with three cuspidal points. The model applies to Bose-Einstein condensates (BECs) and to optical media with saturable nonlinearity, suggesting new ways of making stable 3D BEC solitons and "light bullets" of an arbitrary size.Comment: 9 pages, 4 figures, Phys. Rev. Lett., in pres

    Usefulness of Clinical Definitions of Influenza for Public Health Surveillance Purposes

    Get PDF
    This study investigated the performance of various case definitions and influenza symptoms in a primary healthcare sentinel surveillance system. A retrospective study of the clinical and epidemiological characteristics of the cases reported by a primary healthcare sentinel surveillance network for eleven years in Catalonia was conducted. Crude and adjusted diagnostic odds ratios (aDORs) and 95% confidence intervals (CIs) of the case definitions and symptoms for all weeks and epidemic weeks were estimated. The most predictive case definition for laboratory-confirmed influenza was the World Health Organization (WHO) case definition for ILI in all weeks (aDOR 2.69; 95% CI 2.42-2.99) and epidemic weeks (aDOR 2.20; 95% CI 1.90-2.54). The symptoms that were significant positive predictors for confirmed influenza were fever, cough, myalgia, headache, malaise, and sudden onset. Fever had the highest aDOR in all weeks (4.03; 95% CI 3.38-4.80) and epidemic weeks (2.78; 95% CI 2.21-3.50). All of the case definitions assessed performed better in patients with comorbidities than in those without. The performance of symptoms varied by age groups, with fever being of high value in older people, and cough being of high value in children. In patients with comorbidities, the performance of fever was the highest (aDOR 5.45; 95% CI 3.43-8.66). No differences in the performance of the case definition or symptoms in influenza cases according to virus type were found

    Stable ring vortex solitons in Bessel optical lattices

    Full text link
    Stable ring vortex solitons, featuring a bright-shape, appear to be very rare in nature. However, here we show that they exist and can be made dynamically stable in defocusing cubic nonlinear media with an imprinted Bessel optical lattice. We find the families of vortex lattice solitons and reveal their salient properties, including the conditions required for their stability. We show that the higher the soliton topological charge, the deeper the lattice modulation necessary for stabilization.Comment: 14 pages, 4 figures, submitted to Physical Review Letter

    Topological light bullets supported by spatio-temporal gain

    Full text link
    We reveal that the competition between diffraction, cubic nonlinearity, two-photon absorption, and gain localized in both space and time results in arrest of collapse, suppression of azimuthal modula-tion instabilities for spatiotemporal wavepackets, and formation of stable three-dimensional light bul-lets. We show that Gaussian spatiotemporal gain landscapes support bright, fundamental light bullets, while gain landscapes featuring a ring-like spatial and a Gaussian temporal shapes may support stable vortex bullets carrying topological phase dislocations.Comment: 19 pages, 5 figures, to appear in Physical Review

    Rotary dipole-mode solitons in Bessel photonic lattices

    Full text link
    We address Bessel photonic lattices of radial symmetry imprinted in cubic Kerr-type nonlinear media and show that they support families of stable dipole-mode solitons featuring two out-of-phase light spots located in different lattice rings. We show that the radial symmetry of the Bessel lattices afford a variety of unique soliton dynamics including controlled radiation-free rotation of the dipole-mode solitons.Comment: 12 pages, 4 figures, to appear in Journal of Optics B: Quantum and Semiclassical Optic
    • …
    corecore