33 research outputs found

    Simulation of Information Spreading on Twitter Concerning Radiation After the Fukushima Nuclear Power Plant Accident

    Get PDF
    Information spreading on social media is a crucial issue to build a safe society. In particular, during emergencies, misinformation and uncertain information can lead to social disruption and cause significant damage to our lives. Here we built a retweet network from 24 million radiation-related tweets by 1.3 million accounts in the immediate aftermath of the Fukushima nuclear power plant accident in 2011. Then we simulated the information spreading on the network to explore ways to spread scientifically accurate information. Our simulation replicated the reality in which the number of scientific evidence-based tweets experienced a gradual decline while the number of emotional tweets increased. We also showed that increasing new direct retweets from the influencers could effectively spread scientific evidence-based information in our hypothetical simulations

    Long-term monitoring of the short period SU UMa-type dwarf nova, V844 Herculis

    Get PDF
    We report on time-resolved CCD photometry of four outbursts of a short-period SU UMa-type dwarf nova, V844 Herculis. We successfully determined the mean superhump periods to be 0.05584(64) days, and 0.055883(3) for the 2002 May superoutburst, and the 2006 April-May superoutburst, respectively. During the 2002 October observations, we confirmed that the outburst is a normal outburst, which is the first recorded normal outburst in V844 Her. We also examined superhump period changes during 2002 May and 2006 April-May superoutbursts, both of which showed increasing superhump period over the course of the plateau stage. In order to examine the long-term behavior of V844 Her, we analyzed archival data over the past ten years since the discovery of this binary. Although photometry is not satisfactory in some superoutbursts, we found that V844 Her showed no precursors and rebrightenings. Based on the long-term light curve, we further confirmed V844 Her has shown almost no normal outbursts despite the fact that the supercycle of the system is estimated to be about 300 days. In order to explain the long-term light curves of V844 Her, evaporation in the accretion disk may play a role in the avoidance of several normal outbursts, which does not contradict with the relatively large X-ray luminosity of V844 Her.Comment: 10 pages, 11 figures, accepted for PAS

    Hyperfine structure measurements of antiprotonic helium and antihydrogen

    Get PDF
    This paper describes measurements of the hyperfine structure of two antiprotonic atoms that are planned at the Antiproton Decelerator (AD) at CERN. The first part deals with antiprotonic helium, a three-body system of alpha-particle, antiproton and electron that was previously studied at LEAR. A measurement will test existing three-body calculations and may - through comparison with these theories - determine the magnetic moment of the antiproton more precisely than currently available, thus providing a test of CPT invariance. The second system, antihydrogen, consisting of an antiproton and a positron, is planned to be produced at thermal energies at the AD. A measurement of the ground-state hyperfine splitting, which for hydrogen is one of the most accurately measured physical quantities, will directly yield a precise value for the magnetic moment of the antiproton, and also compare the internal structure of proton and antiproton through the contribution of the magnetic size of the antiproton to the ground state hyperfine splitting.This paper describes measurements of the hyperfine structure of two antiprotonic atoms that are planned at the Antiproton Decelerator (AD) at CERN. The first part deals with antiprotonic helium, a three-body system of alpha-particle, antiproton and electron that was previously studied at LEAR. A measurement will test existing three-body calculations and may - through comparison with these theories - determine the magnetic moment of the antiproton more precisely than currently available, thus providing a test of CPT invariance. The second system, antihydrogen, consisting of an antiproton and a positron, is planned to be produced at thermal energies at the AD. A measurement of the ground-state hyperfine splitting, which for hydrogen is one of the most accurately measured physical quantities, will directly yield a precise value for the magnetic moment of the antiproton, and also compare the internal structure of proton and antiproton through the contribution of the magnetic size of the antiproton to the ground state hyperfine splitting.This paper describes measurements of the hyperfine structure of two antiprotonic atoms that are planned at the Antiproton Decelerator (AD) at CERN. The first part deals with antiprotonic helium, a three-body system of alpha-particle, antiproton and electron that was previously studied at LEAR. A measurement will test existing three-body calculations and may - through comparison with these theories - determine the magnetic moment of the antiproton more precisely than currently available, thus providing a test of CPT invariance. The second system, antihydrogen, consisting of an antiproton and a positron, is planned to be produced at thermal energies at the AD. A measurement of the ground-state hyperfine splitting, which for hydrogen is one of the most accurately measured physical quantities, will directly yield a precise value for the magnetic moment of the antiproton, and also compare the internal structure of proton and antiproton through the contribution of the magnetic size of the antiproton to the ground state hyperfine splitting.This paper describes measurements of the hyperfine structure of two antiprotonic atoms that are planned at the Antiproton Decelerator (AD) at CERN. The first part deals with antiprotonic helium, a three-body system of alpha-particle, antiproton and electron that was previously studied at LEAR. A measurement will test existing three-body calculations and may - through comparison with these theories - determine the magnetic moment of the antiproton more precisely than currently available, thus providing a test of CPT invariance. The second system, antihydrogen, consisting of an antiproton and a positron, is planned to be produced at thermal energies at the AD. A measurement of the ground-state hyperfine splitting, which for hydrogen is one of the most accurately measured physical quantities, will directly yield a precise value for the magnetic moment of the antiproton, and also compare the internal structure of proton and antiproton through the contribution of the magnetic size of the antiproton to the ground state hyperfine splitting.This paper describes measurements of the hyperfine structure of two antiprotonic atoms that are planned at the Antiproton Decelerator (AD) at CERN. The first part deals with antiprotonic helium, a three-body system of alpha-particle, antiproton and electron that was previously studied at LEAR. A measurement will test existing three-body calculations and may - through comparison with these theories - determine the magnetic moment of the antiproton more precisely than currently available, thus providing a test of CPT invariance. The second system, antihydrogen, consisting of an antiproton and a positron, is planned to be produced at thermal energies at the AD. A measurement of the ground-state hyperfine splitting, which for hydrogen is one of the most accurately measured physical quantities, will directly yield a precise value for the magnetic moment of the antiproton, and also compare the internal structure of proton and antiproton through the contribution of the magnetic size of the antiproton to the ground state hyperfine splitting.This paper describes measurements of the hyperfine structure of two antiprotonic atoms that are planned at the Antiproton Decelerator (AD) at CERN. The first part deals with antiprotonic helium, a three-body system of α-particle, antiproton and electron that was previously studied at LEAR. A measurement will test existing three-body calculations and may— through comparison with these theories— determine the magnetic moment μp\mu _{\overline {\text{p}} } of the antiproton more precisely than currently available, thus providing a test of CPT invariance. The second system, antihydrogen, consisting of an antiproton and apositron, is planned to be produced at thermal energies at the AD. A measurement of the ground-state hyperfine splitting vHF(H)v_{{\text{HF}}} \left( {\overline {\text{H}} } \right), which for hydrogen is one of the most accurately measuredp hysical quantities, will directly yielda precise value for μp\mu _{\overline {\text{p}} } , andalso compare the internal structure of proton andan tiproton through the contribution of the magnetic size of the ptoνHF(H)\overline {\text{p}} {\mathbf{ }}{\text{to}}{\mathbf{ }}\nu _{{\text{HF}}} \left( {\overline {\text{H}} } \right)

    High Excitation Molecular Gas in the Galactic Center Loops; 12CO(J =2-1 and J =3-2) Observations

    Full text link
    We have carried out 12CO(J =2-1) and 12CO(J =3-2) observations at spatial resolutions of 1.0-3.8 pc toward the entirety of loops 1 and 2 and part of loop 3 in the Galactic center with NANTEN2 and ASTE. These new results revealed detailed distributions of the molecular gas and the line intensity ratio of the two transitions, R3-2/2-1. In the three loops, R3-2/2-1 is in a range from 0.1 to 2.5 with a peak at ~ 0.7 while that in the disk molecular gas is in a range from 0.1 to 1.2 with a peak at 0.4. This supports that the loops are more highly excited than the disk molecular gas. An LVG analysis of three transitions, 12CO J =3-2 and 2-1 and 13CO J =2-1, toward six positions in loops 1 and 2 shows density and temperature are in a range 102.2 - 104.7 cm-3 and 15-100 K or higher, respectively. Three regions extended by 50-100 pc in the loops tend to have higher excitation conditions as characterized by R3-2/2-1 greater than 1.2. The highest ratio of 2.5 is found in the most developed foot points between loops 1 and 2. This is interpreted that the foot points indicate strongly shocked conditions as inferred from their large linewidths of 50-100 km s-1, confirming the suggestion by Torii et al. (2010b). The other two regions outside the foot points suggest that the molecular gas is heated up by some additional heating mechanisms possibly including magnetic reconnection. A detailed analysis of four foot points have shown a U shape, an L shape or a mirrored-L shape in the b-v distribution. It is shown that a simple kinematical model which incorporates global rotation and expansion of the loops is able to explain these characteristic shapes.Comment: 59 pages, accepted to PAS

    Distance determination of molecular clouds in the 1st quadrant of the Galactic plane using deep learning : I. Method and Results

    Full text link
    Machine learning has been successfully applied in varied field but whether it is a viable tool for determining the distance to molecular clouds in the Galaxy is an open question. In the Galaxy, the kinematic distance is commonly employed as the distance to a molecular cloud. However, there is a problem in that for the inner Galaxy, two different solutions, the ``Near'' solution, and the ``Far'' solution, can be derived simultaneously. We attempted to construct a two-class (``Near'' or ``Far'') inference model using a Convolutional Neural Network (CNN), a form of deep learning that can capture spatial features generally. In this study, we used the CO dataset toward the 1st quadrant of the Galactic plane obtained with the Nobeyama 45-m radio telescope (l = 62-10 degree, |b| < 1 degree). In the model, we applied the three-dimensional distribution (position-position-velocity) of the 12CO (J=1-0) emissions as the main input. The dataset with ``Near'' or ``Far'' annotation was made from the HII region catalog of the infrared astronomy satellite WISE to train the model. As a result, we could construct a CNN model with a 76% accuracy rate on the training dataset. By using the model, we determined the distance to molecular clouds identified by the CLUMPFIND algorithm. We found that the mass of the molecular clouds with a distance of < 8.15 kpc identified in the 12CO data follows a power-law distribution with an index of about -2.3 in the mass range of M >10^3 Msun. Also, the detailed molecular gas distribution of the Galaxy as seen from the Galactic North pole was determined.Comment: 29 pages, 12 figure

    The 2006 November outburst of EG Aquarii: the SU UMa nature revealed

    Full text link
    We report time-resolved CCD photometry of the cataclysmic variable EG Aquarii during the 2006 November outburst During the outburst, superhumps were unambiguously detected with a mean period of 0.078828(6) days, firstly classifying the object as an SU UMa-type dwarf nova. It also turned out that the outburst contained a precursor. At the end of the precursor, immature profiles of humps were observed. By a phase analysis of these humps, we interpreted the features as superhumps. This is the second example that the superhumps were shown during a precursor. Near the maximum stage of the outburst, we discovered an abrupt shift of the superhump period by {\sim} 0.002 days. After the supermaximum, the superhump period decreased at the rate of P˙/P\dot{P}/P=8.2×105-8.2{\times}10^{-5}, which is typical for SU UMa-type dwarf novae. Although the outburst light curve was characteristic of SU UMa-type dwarf novae, long-term monitoring of the variable shows no outbursts over the past decade. We note on the basic properties of long period and inactive SU UMa-type dwarf novae.Comment: 9 pages, 7 figures, accepted for PAS

    THE NEUTRAL INTERSTELLAR GAS TOWARD SNR W44: CANDIDATES FOR TARGET PROTONS IN HADRONIC γ-RAY PRODUCTION IN A MIDDLE-AGED SUPERNOVA REMNANT

    Get PDF
    We present an analysis of the interstellar medium (ISM) toward the γ-ray supernova remnant (SNR) W44. We used NANTEN2 12CO(J = 2-1) and 12CO(J = 1-0) data and Arecibo H I data in order to identify the molecular and atomic gas in the SNR. We confirmed that the molecular gas is located in the SNR shell with a primary peak toward the eastern edge of the shell. We newly identified high-excitation molecular gas along the eastern shell of the SNR in addition to the high-excitation broad gas previously observed inside the shell; the line intensity ratio between the 12CO(J = 2-1) and 12CO(J = 1-0) transitions in these regions is greater than ~1.0, suggesting a kinetic temperature of 30 K or higher, which is most likely due to heating by shock interaction. By comparing the ISM with γ-rays, we find that target protons of hadronic origin are dominated by molecular protons of average density around 200 cm–3, where the possible contribution of atomic protons is 10% or less. This average density is consistent with the recent discovery of the low-energy γ-rays suppressed in 50 MeV-10 GeV as observed with AGILE and Fermi. The γ-ray spectrum differs from place to place in the SNR, suggesting that the cosmic-ray (CR) proton spectrum significantly changes within the middle-aged SNR perhaps due to the energy-dependent escape of CR protons from the acceleration site. We finally derive a total CR proton energy of ~1049 erg, consistent with the SN origin of the majority of the CRs in the Galaxy

    A Quantitative Image Cytometry Technique for Time Series or Population Analyses of Signaling Networks

    Get PDF
    Background: Modeling of cellular functions on the basis of experimental observation is increasingly common in the field of cellular signaling. However, such modeling requires a large amount of quantitative data of signaling events with high spatio-temporal resolution. A novel technique which allows us to obtain such data is needed for systems biology of cellular signaling. Methodology/Principal Findings: We developed a fully automatable assay technique, termed quantitative image cytometry (QIC), which integrates a quantitative immunostaining technique and a high precision image-processing algorithm for cell identification. With the aid of an automated sample preparation system, this device can quantify protein expression, phosphorylation and localization with subcellular resolution at one-minute intervals. The signaling activities quantified by the assay system showed good correlation with, as well as comparable reproducibility to, western blot analysis. Taking advantage of the high spatio-temporal resolution, we investigated the signaling dynamics of the ERK pathway in PC12 cells. Conclusions/Significance: The QIC technique appears as a highly quantitative and versatile technique, which can be a convenient replacement for the most conventional techniques including western blot, flow cytometry and live cell imaging

    Survey of Period Variations of Superhumps in SU UMa-Type Dwarf Novae

    Full text link
    We systematically surveyed period variations of superhumps in SU UMa-type dwarf novae based on newly obtained data and past publications. In many systems, the evolution of superhump period are found to be composed of three distinct stages: early evolutionary stage with a longer superhump period, middle stage with systematically varying periods, final stage with a shorter, stable superhump period. During the middle stage, many systems with superhump periods less than 0.08 d show positive period derivatives. Contrary to the earlier claim, we found no clear evidence for variation of period derivatives between superoutburst of the same object. We present an interpretation that the lengthening of the superhump period is a result of outward propagation of the eccentricity wave and is limited by the radius near the tidal truncation. We interpret that late stage superhumps are rejuvenized excitation of 3:1 resonance when the superhumps in the outer disk is effectively quenched. Many of WZ Sge-type dwarf novae showed long-enduring superhumps during the post-superoutburst stage having periods longer than those during the main superoutburst. The period derivatives in WZ Sge-type dwarf novae are found to be strongly correlated with the fractional superhump excess, or consequently, mass ratio. WZ Sge-type dwarf novae with a long-lasting rebrightening or with multiple rebrightenings tend to have smaller period derivatives and are excellent candidate for the systems around or after the period minimum of evolution of cataclysmic variables (abridged).Comment: 239 pages, 225 figures, PASJ accepte

    Waon therapy improves the prognosis of patients with chronic heart failure

    Get PDF
    Summary Background: We developed a Waon therapy (soothing warm therapy) and have previously reported that repeated Waon therapy improves hemodynamics, peripheral vascular function, arrhythmias, and clinical symptoms in patients with chronic heart failure (CHF). The aim of this study was to investigate the effect of Waon therapy on the prognosis of CHF patients. Patients and methods: We studied 129 patients with CHF in NYHA functional class III or IV who were admitted to our hospital between January 1999 and March 2001. In the Waon therapy group, 64 patients were treated with a far infrared-ray dry sauna at 60 • C for 15 min and then kept on bed rest with a blanket for 30 min. The patients were treated daily for 5 days during admission, and then at least twice a week after discharge. In the control group, 65 patients, matched for age, gender, and NYHA functional class, were treated with traditional CHF therapy. The follow-up time was scheduled for 5 years. Results: Recent, complete follow-up data on each patient were obtained. The overall survival rate was 84.5% (Kaplan-Meier estimate). Twelve patients died in the control group and 8 patients died in the Waon therapy group at 60 months of follow-up
    corecore