74 research outputs found
Formulation of consumables management models, executive summary
Future manned space programs that have increased launch frequencies and reusable systems require an implementation of new consumables and systems management techniques that relieve both the operations support personnel and flight crew activities. Analytical models and techniques were developed which consist of a Mission Planning Processor (MPP) with appropriate consumables data base, methods of recognizing potential constraint violations in both the planning and flight operations functions, and flight data files for storage/retrieval of information over extended periods interfacing with flight operations processors for monitoring of the actual flights. Consumables subsystems considered in the MPP were electrical power, environmental control and life support, propulsion, hydraulics and auxiliary power
Formulation of consumables management models. Volume 2: Mission planning processor user guide
A user guide for the MPP (Mission Planning Processor) is presented. The MPP is used in the evaluation of particular missions, with appropriate display and storage of related consumables data. Design goals are accomplished by the use of an on-line/demand mode computer terminal Cathode Ray Tube Display. The process is such that the user merely adds specific mission/flight functions to a skeleton flight and/or alters the skeleton. The skeleton flight includes operational aspects from prelaunch through ground support equipment connect after rollout as required to place the STS (Space Transportation System) in a parking orbit, maintain the spacecraft and crew for the stated on-orbit period and return
Advanced flight design systems subsystem performance models. User guide: Environmental analysis routine library
A user guide for a library of interactive computer routines used to develop performance analysis models of specific environmental control and life support subsystems is presented
Formulation of consumables management models. Volume 1: Mission planning
Development of an STS (Space Transportation System) interactive computer program MPP (Mission Planning Processor) working model was conducted. A summary of the computer program development and those supporting tasks conducted is presented. Development of the MPP Computer Program is discussed. This development was supported by several parallel tasks. These tasks either directly supported the program development, or provided information for future application and/or modification to the program in relation to the flight planning and flight operations of the STS and advanced spacecraft. The supporting tasks also included development of a Space Station MPP to demonstrate the applicability of the analytical methods developed under this RTOP to more advanced spacecraft than the STS
Advanced flight design systems subsystem performance models. Sample model: Environmental analysis routine library
A sample environmental control and life support model performance analysis using the environmental analysis routines library is presented. An example of a complete model set up and execution is provided. The particular model was synthesized to utilize all of the component performance routines and most of the program options
Formulation of consumables management models: Mission planning processor payload interface definition
Consumables models required for the mission planning and scheduling function are formulated. The relation of the models to prelaunch, onboard, ground support, and postmission functions for the space transportation systems is established. Analytical models consisting of an orbiter planning processor with consumables data base is developed. A method of recognizing potential constraint violations in both the planning and flight operations functions, and a flight data file storage/retrieval of information over an extended period which interfaces with a flight operations processor for monitoring of the actual flights is presented
Formulation of advanced consumables management models: Environmental control and electrical power system performance models requirements
Software design specifications for developing environmental control and life support system (ECLSS) and electrical power system (EPS) programs into interactive computer programs are presented. Specifications for the ECLSS program are at the detail design level with respect to modification of an existing batch mode program. The FORTRAN environmental analysis routines (FEAR) are the subject batch mode program. The characteristics of the FEAR program are included for use in modifying batch mode programs to form interactive programs. The EPS program specifications are at the preliminary design level. Emphasis is on top-down structuring in the development of an interactive program
Formulation of advanced consumables management models: Executive summary
An overview of studies conducted to establish the requirements for advanced subsystem analytical tools is presented. Modifications are defined for updating current computer programs used to analyze environmental control, life support, and electric power supply systems so that consumables for future advanced spacecraft may be managed
Advanced flight design systems subsystem performance models. Executive summary
Subsystem performance analysis required in flight design to assess the capability of the environmental control and life support system (ECLSS) to support the flight requirements and define operational procedures under contingency flight conditions is described. Current ECLSS modeling techniques are limited in the variety of configurations and they employ batch mode computer programs execution methods. Improvements in the variety of configurations that are modeled and a reduction in effort required for modeling and analysis is accomplished by developing a modular computer program which operates interactively
Recommended from our members
Assessment of the MACC reanalysis and its influence as chemical boundary conditions for regional air quality modeling in AQMEII-2
The Air Quality Model Evaluation International Initiative (AQMEII) has now reached its second phase which is dedicated to the evaluation of online coupled chemistry-meteorology models. Sixteen modeling groups from Europe and five from North America have run regional air quality models to simulate the year 2010 over one European and one North American domain. The MACC re-analysis has been used as chemical initial (IC) and boundary conditions (BC) by all participating regional models in AQMEII-2. The aim of the present work is to evaluate the MACC re-analysis along with the participating regional models against a set of ground-based measurements (O3, CO, NO, NO2, SO2, SO42−) and vertical profiles (O3 and CO). Results indicate different degrees of agreement between the measurements and the MACC re-analysis, with an overall better performance over the North American domain. The influence of BC on regional air quality simulations is analyzed in a qualitative way by contrasting model performance for the MACC re-analysis with that for the regional models. This approach complements more quantitative approaches documented in the literature that often have involved sensitivity simulations but typically were limited to only one or only a few regional scale models. Results suggest an important influence of the BC on ozone for which the underestimation in winter in the MACC re-analysis is mimicked by the regional models. For CO, it is found that background concentrations near the domain boundaries are rather close to observations while those over the interior of the two continents are underpredicted by both MACC and the regional models over Europe but only by MACC over North America. This indicates that emission differences between the MACC re-analysis and the regional models can have a profound impact on model performance and points to the need for harmonization of inputs in future linked global/regional modeling studies
- …