23 research outputs found

    New species can broaden myelin research: suitability of little skate, Leucoraja erinacea

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Moebius, W., Huemmert, S., Ruhwedel, T., Kuzirian, A., & Gould, R. New species can broaden myelin research: suitability of little skate, Leucoraja erinacea. Life, 11(2), (2021): 136, https://doi.org/10.3390/life11020136.Although myelinated nervous systems are shared among 60,000 jawed vertebrates, studies aimed at understanding myelination have focused more and more on mice and zebrafish. To obtain a broader understanding of the myelination process, we examined the little skate, Leucoraja erinacea. The reasons behind initiating studies at this time include: the desire to study a species belonging to an out group of other jawed vertebrates; using a species with embryos accessible throughout development; the availability of genome sequences; and the likelihood that mammalian antibodies recognize homologs in the chosen species. We report that the morphological features of myelination in a skate hatchling, a stage that supports complex behavioral repertoires needed for survival, are highly similar in terms of: appearances of myelinating oligodendrocytes (CNS) and Schwann cells (PNS); the way their levels of myelination conform to axon caliber; and their identity in terms of nodal and paranodal specializations. These features provide a core for further studies to determine: axon–myelinating cell communication; the structures of the proteins and lipids upon which myelinated fibers are formed; the pathways used to transport these molecules to sites of myelin assembly and maintenance; and the gene regulatory networks that control their expressions.This research received no external funding

    Myelination generates aberrant ultrastructure that is resolved by microglia

    Get PDF
    To enable rapid propagation of action potentials, axons are ensheathed by myelin, a multilayered insulating membrane formed by oligodendrocytes. Most of the myelin is generated early in development, resulting in the generation of long-lasting stable membrane structures. Here, we explored structural and dynamic changes in central nervous system myelin during development. To achieve this, we performed an ultrastructural analysis of mouse optic nerves by serial block face scanning electron microscopy (SBF-SEM) and confocal time-lapse imaging in the zebrafish spinal cord. We found that myelin undergoes extensive ultrastructural changes during early postnatal development. Myelin degeneration profiles were engulfed and phagocytosed by microglia using exposed phosphatidylserine as one “eat me” signal. In contrast, retractions of entire myelin sheaths occurred independently of microglia and involved uptake of myelin by the oligodendrocyte itself. Our findings show that the generation of myelin early in development is an inaccurate process associated with aberrant ultrastructural features that require substantial refinement.</p

    Decoupling astrocytes in adult mice impairs synaptic plasticity and spatial learning

    Full text link
    The mechanisms by which astrocytes modulate neural homeostasis, synaptic plasticity, and memory are still poorly explored. Astrocytes form large intercellular networks by gap junction coupling, mainly composed of two gap junction channel proteins, connexin 30 (Cx30) and connexin 43 (Cx43). To circumvent developmental perturbations and to test whether astrocytic gap junction coupling is required for hippocampal neural circuit function and behavior, we generate and study inducible, astrocyte-specific Cx30 and Cx43 double knockouts. Surprisingly, disrupting astrocytic coupling in adult mice results in broad activation of astrocytes and microglia, without obvious signs of pathology. We show that hippocampal CA1 neuron excitability, excitatory synaptic transmission, and long-term potentiation are significantly affected. Moreover, behavioral inspection reveals deficits in sensorimotor performance and a complete lack of spatial learning and memory. Together, our findings establish that astrocytic connexins and an intact astroglial network in the adult brain are vital for neural homeostasis, plasticity, and spatial cognition

    Aspartoacylase-LacZ Knockin Mice: An Engineered Model of Canavan Disease

    Get PDF
    Canavan Disease (CD) is a recessive leukodystrophy caused by loss of function mutations in the gene encoding aspartoacylase (ASPA), an oligodendrocyte-enriched enzyme that hydrolyses N-acetylaspartate (NAA) to acetate and aspartate. The neurological phenotypes of different rodent models of CD vary considerably. Here we report on a novel targeted aspa mouse mutant expressing the bacterial ÎČ-Galactosidase (lacZ) gene under the control of the aspa regulatory elements. X-Gal staining in known ASPA expression domains confirms the integrity of the modified locus in heterozygous aspa lacZ-knockin (aspalacZ/+) mice. In addition, abundant ASPA expression was detected in Schwann cells. Homozygous (aspalacZ/lacZ) mutants are ASPA-deficient, show CD-like histopathology and moderate neurological impairment with behavioural deficits that are more pronounced in aspalacZ/lacZ males than females. Non-invasive ultrahigh field proton magnetic resonance spectroscopy revealed increased levels of NAA, myo-inositol and taurine in the aspalacZ/lacZ brain. Spongy degeneration was prominent in hippocampus, thalamus, brain stem, and cerebellum, whereas white matter of optic nerve and corpus callosum was spared. Intracellular vacuolisation in astrocytes coincides with axonal swellings in cerebellum and brain stem of aspalacZ/lacZ mutants indicating that astroglia may act as an osmolyte buffer in the aspa-deficient CNS. In summary, the aspalacZ mouse is an accurate model of CD and an important tool to identify novel aspects of its complex pathology

    Towards correlative imaging of neuronal tissue by phase-contrast x-ray tomography and SEM

    No full text
    The mammalian brain shows a complex and hierarchical architecture, whose assessment at all functionally relevant scales requires the establishment of multiomics approaches. In this work, we propose a correlative workflow, which is based on large-scale overview PC-CT scans using the extended beams offered by laboratory ÎŒCT sources and parallel beam synchrotron radiation (SR), with subsequent zooms into specific regions-of-interest using cone-beam recordings with nanofocused laboratory sources or SR, and finally SEM in controlled and wellidentified sub-volumes obtained before. We demonstrate the workflow at the example of rOTO-stained murine corpus callosum tissue, a brain region rich in myelinated nerve fibers. Based on two different and complementary techniques, PC-CT and scanning electron microscopy (SEM), we approach the establishment of a correlative imaging workflow. As we show here, the workflow can be applied (i) in a correlative study, in order to add further quantitative value, for instance, or (ii) in a multiscale approach, to which PC-CT can contribute volume throughput, while SEM can contribute resolution. The findings from this work demonstrate the complementary strength of each modality in terms of resolution (FIB-SEM) and FOV or volume throughput (PC-CT)

    Cryo FIB-SEM: Volume imaging of cellular ultrastructure in native frozen specimens

    Get PDF
    Volume microscopy at high resolution is increasingly required to better understand cellular functions in the context of three-dimensional assemblies. Focused ion beam (FIB) milling for serial block face imaging in the scanning electron microscope (SEM) is an efficient and fast method to generate such volume data for 3D analysis. Here, we apply this technique at cryo-conditions to image fully hydrated frozen specimen of mouse optic nerves and Bacillus subtilis spores obtained by high-pressure freezing (HPF). We established imaging conditions to directly visualize the ultrastructure in the block face at −150 °C by using an in-lens secondary electron (SE) detector. By serial sectioning with a focused ion beam and block face imaging of the optic nerve we obtained a volume as large as X = 7.72 ÎŒm, Y = 5.79 ÎŒm and Z = 3.81 ÎŒm with a lateral pixel size of 7.5 nm and a slice thickness of 30 nm in Z. The intrinsic contrast of membranes was sufficient to distinguish structures like Golgi cisternae, vesicles, endoplasmic reticulum and cristae within mitochondria and allowed for a three-dimensional reconstruction of different types of mitochondria within an oligodendrocyte and an astrocytic process. Applying this technique to dormant B. subtilis spores we obtained volumes containing numerous spores and discovered a bright signal in the core, which cannot be related to any known structure so far. In summary, we describe the use of cryo FIB-SEM as a tool for direct and fast 3D cryo-imaging of large native frozen samples including tissues

    Three-dimensional virtual histology of the cerebral cortex based on phase-contrast X-ray tomography

    No full text
    In this work, we optimize the setups and experimental parameters of X-ray phase-contrast computed-tomography for the three-dimensional imaging of the cyto- and myeloarchitecture of cerebral cortex, including both human and murine tissue. We present examples for different optical configurations using state-of-the art synchrotron instruments for holographic tomography, as well as compact laboratory setups for phase-contrast tomography in the direct contrast (edge-enhancement) regime. Apart from unstained and paraffin-embedded tissue, we tested hydrated tissue, as well as heavy metal stained and resin-embedded tissue using two different protocols. Further, we show that the image quality achieved allows to assess the neuropathology of multiple sclerosis in a biopsy sample collected during surgery

    Blood-brain barrier hyperpermeability precedes demyelination in the cuprizone model

    No full text
    Abstract In neuroinflammatory disorders such as multiple sclerosis, the physiological function of the blood-brain barrier (BBB) is perturbed, particularly in demyelinating lesions and supposedly secondary to acute demyelinating pathology. Using the toxic non-inflammatory cuprizone model of demyelination, we demonstrate, however, that the onset of persistent BBB impairment precedes demyelination. In addition to a direct effect of cuprizone on endothelial cells, a plethora of inflammatory mediators, which are mainly of astroglial origin during the initial disease phase, likely contribute to the destabilization of endothelial barrier function in vivo. Our study reveals that, at different time points of pathology and in different CNS regions, the level of gliosis correlates with the extent of BBB hyperpermeability and edema. Furthermore, in mutant mice with abolished type 3 CXC chemokine receptor (CXCR3) signaling, inflammatory responses are dampened and BBB dysfunction ameliorated. Together, these data have implications for understanding the role of BBB permeability in the pathogenesis of demyelinating disease

    Cortical network dysfunction caused by a subtle defect of myelination

    No full text
    Subtle white matter abnormalities have emerged as a hallmark of brain alterations in magnetic resonance imaging or upon autopsy of mentally ill subjects. However, it is unknown whether such reduction of white matter and myelin contributes to any disease-relevant phenotype or simply constitutes an epiphenomenon, possibly even treatment-related. Here, we have reanalyzed Mbp heterozygous mice, the unaffected parental strain of shiverer, a classical neurological mutant. Between 2 and 20 months of age, Mbp1/- versus Mbp1/1 littermates were deeply phenotyped by combining extensive behavioral/cognitive testing with MRI, 1H-MR spectroscopy, electron microscopy, and molecular techniques. Surprisingly, Mbp-dependent myelination was significantly reduced in the prefrontal cortex. We also noticed a mild but progressive hypomyelination of the prefrontal corpus callosum and low-grade inflammation. While most behavioral functions were preserved, Mbp1/- mice exhibited defects of sensorimotor gating, as evidenced by reduced prepulse-inhibition, and a late-onset catatonia phenotype. Thus, subtle but primary abnormalities of CNS myelin can be the cause of a persistent cortical network dysfunction including catatonia, features typical of neuropsychiatric conditions.peerReviewe
    corecore