19 research outputs found

    Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota

    Get PDF
    In recent years, several associations between common chronic human disorders and altered gut microbiome composition and function have been reported(1,2). In most of these reports, treatment regimens were not controlled for and conclusions could thus be confounded by the effects of various drugs on the microbiota, which may obscure microbial causes, protective factors or diagnostically relevant signals. Our study addresses disease and drug signatures in the human gut microbiome of type 2 diabetes mellitus (T2D). Two previous quantitative gut metagenomics studies of T2D patients that were unstratified for treatment yielded divergent conclusions regarding its associated gut microbial dysbiosis(3,4). Here we show, using 784 available human gut metagenomes, how antidiabetic medication confounds these results, and analyse in detail the effects of the most widely used antidiabetic drug metformin. We provide support for microbial mediation of the therapeutic effects of metformin through short-chain fatty acid production, as well as for potential microbiota-mediated mechanisms behind known intestinal adverse effects in the form of a relative increase in abundance of Escherichia species. Controlling for metformin treatment, we report a unified signature of gut microbiome shifts in T2D with a depletion of butyrate-producing taxa(3,4). These in turn cause functional microbiome shifts, in part alleviated by metformin-induced changes. Overall, the present study emphasizes the need to disentangle gut microbiota signatures of specific human diseases from those of medication

    Contrast-enhanced Micro-CT 3D visualization of cell distribution in hydrated human cornea

    No full text
    Background: The cornea, a vital component of the human eye, plays a crucial role in maintaining visual clarity. Understanding its ultrastructural organization and cell distribution is fundamental for elucidating corneal physiology and pathology. This study comprehensively examines the microarchitecture of the hydrated human cornea using contrast-enhanced micro-computed tomography (micro-CT). Method: Fresh human corneal specimens were carefully prepared and hydrated to mimic their in vivo state. Contrast enhancement with Lugol's iodine-enabled high-resolution Micro-CT imaging. The cells' three-dimensional (3D) distribution within the cornea was reconstructed and analyzed. Results: The micro-CT imaging revealed exquisite details of the corneal ultrastructure, including the spatial arrangement of cells throughout its depth. This novel approach allowed for the visualization of cells' density and distribution in different corneal layers. Notably, our findings highlighted variations in cell distribution between non-hydrated and hydrated corneas. Conclusions: This study demonstrates the potential of contrast-enhanced micro-CT as a valuable tool for non-destructive, 3D visualization and quantitative analysis of cell distribution in hydrated human corneas. These insights contribute to a better understanding of corneal physiology and may have implications for research in corneal diseases and tissue engineering

    Contrast-enhanced nano-CT reveals dental soft tissues and cellular layers

    No full text
    Aim: Nano-CT technologies offer 3D imaging methods that allow high-resolution examination of bones and teeth, but soft tissue components have weak X-ray attenuation and are not easily visualised in CT images. We introduce a methodology designed to simultaneously visualise dental ultrastructure, including cellular and soft tissue components, by utilising phosphotungstic acid (PTA) as a contrast-enhancement agent. Methodology: Sound third molars were collected from healthy human adults and fixed in 4% buffered paraformaldehyde. To evaluate the impact of PTA in concentrations of 0.3%, 0.7% and 1% on dental soft and hard tissues for CT imaging, cementum and dentine-pulp sections were cut, dehydrated and stained with immersion periods of 12 hours, 24 hours, 2 days or 5 days. The samples were scanned with high-resolution nano-CT, where we examined both the cementum and pulpal regions with pixel sizes down to 0.5 µm for dental-pulp sections. Results: Dental cementum and periodontium as well as odontoblasts and predentine were made visible through PTA-staining in high-resolution three-dimensional nano-CT scans. Different segments of the tooth required different staining protocols. The thickness of the cementum could be computed over the height of the tooth once it was made visible by the PTA-enhanced contrast, and the attached soft tissue components of the interior of the tooth could be shown on the dentine-pulp interface in greater detail. Three-dimensional illustrations allowed a histology-like visualisation of the sections in all orientations with a single scan and easy sample preparation. The segmentation of the sigmoidal dentinal tubules and the surrounding dentine allowed a three-dimensional investigation and quantative of the dentine composition, such as the tubular lumen or the ratio of the tubular lumen area to the dentinal surface. Conclusion: The staining protocol made it possible to visualise hard tissues along with cellular layers and soft tissues using a laboratory-based nano-CT technique. The protocol depended on both tissue type and size. This methodology offers enhanced possibilities for the concomitant visualisation of soft and hard dental tissues

    Eggshell-derived amorphous calcium phosphate: Synthesis, characterization and bio-functions as bone graft materials in novel 3D osteoblastic spheroids model

    Get PDF
    A multitude of autogenous/allogeneic and semi-synthetic bone graft materials have been developed to reconstruct the defective bone tissue but with high bio-cost and potential environmental pollution. With high calcium content and several trace elements, chicken eggshells are no longer considered as wastes but attractive sources of high-value-added biomaterials. This study used chicken eggshells and synthetic hydroxyapatite (HAp) to synthesize amorphous calcium phosphate (ACP) bone graft materials, namely Control and Eggshell. The physiochemical characteristics, biosafety, and immunocompatibility of synthetic ACP particles were inspected. Their osteogenic activity was further investigated in a novel osteoblastic spheroids model. Eggshell ACP particles exhibited ideal cytocompatibility compared to the control ACP and were more resistant to re-crystallization. In osteoblastic spheroids, Eggshell ACP mediated typical osteogenic mRNA profiles of MC-3T3-E1 cells, accompanied by the increased formation of mineralized nodules and boosted synthesis of ECM proteins represented by OPN and collagen I. This study establishes a promising technique to synthesize stable, safe, and osteoinductive ACP graft particles from eggshell waste. Furthermore, the osteoblastic spheroids constructed in the present study provide a more practical model for biomaterial research, which reflect the three-dimensional interaction between host bone tissue and graft materials more realistically

    Richness of human gut microbiome correlates with metabolic markers

    No full text
    We are facing a global metabolic health crisis provoked by an obesity epidemic. Here we report the human gut microbial composition in a population sample of 123 non-obese and 169 obese Danish individuals. We find two groups of individuals that differ by the number of gut microbial genes and thus gut bacterial richness. They contain known and previously unknown bacterial species at different proportions; individuals with a low bacterial richness (23% of the population) are characterized by more marked overall adiposity, insulin resistance and dyslipidaemia and a more pronounced inflammatory phenotype when compared with high bacterial richness individuals. The obese individuals among the lower bacterial richness group also gain more weight over time. Only a few bacterial species are sufficient to distinguish between individuals with high and low bacterial richness, and even between lean and obese participants. Our classifications based on variation in the gut microbiome identify subsets of individuals in the general white adult population who may be at increased risk of progressing to adiposity-associated co-morbidities
    corecore