341 research outputs found

    Touro Torah 1995

    Get PDF
    Yom Kippur, Succos and Simchas Torah. A Publication of the Torah Lishma Club, Women\u27s Division, Touro College Manhattan, Lexington Campushttps://touroscholar.touro.edu/archives_books/1308/thumbnail.jp

    Kinetic energy harvesting

    No full text
    This paper reviews kinetic energy harvesting as a potential localised power supply for wireless applications. Harvesting devices are typically implemented as resonant devices of which the power output depends upon the size of the inertial mass, the frequency and amplitude of the driving vibrations, the maximum available mass displacement and the damping. Three transduction mechanisms are currently primarily employed to convert mechanical into electrical energy: electromagnetic, piezoelectric and electrostatic. Piezoelectric and electrostatic mechanisms are best suited to small size MEMS implementations, but the power output from such devices is at present limited to a few microwatts. An electromagnetic generator implemented with discrete components has produced a power 120 ?W with the highest recorded efficiency to date of 51% for a device of this size reported to date. The packaged device is 0.8 cm3 and weighs 1.6 grams. The suitability of the technology in space applications will be determined by the nature of the available kinetic energy and the required level of output power. A radioactively coupled device may present an opportunity where suitable vibrations do not exist

    The Ramifications of \u3cem\u3eWisconsin v. Yoder\u3c/em\u3e: Six Foundational Problems with a 50-Year Old Landmark Case

    Get PDF
    My essay introduces the 1972 United States Supreme Court case Wisconsin v. Yoder to readers who don’t come from a legal background who want to understand the negative ramifications of the case and how it affects their individual rights. Yoder says that children of practicing Amish don’t have a right to any education and future other than one inside the Amish Church. My essay deconstructs the case from the perspective of an Amish American woman— yours truly — who escaped in the middle of the night at age 15 because of how this ruling has shaped the Amish people. I wanted to go to high school, and Yoder was cited in my emancipation hearing post-escape for why I had to be on my own if I wanted an education past the eighth grade. If I waited until I was 18 to escape, I would’ve been prevented or discouraged from enrolling in high school and advised or required to attend an alternative program for juvenile delinquents or, at best, adult education. [First paragraph.

    Development of a cantilever beam generator employing vibration energy harvesting

    No full text
    This paper details the development of a generator based upon a cantilever beam inertial mass system which harvests energy from ambient environmental vibrations. The paper compares the predicted results from Finite Element Analysis (FEA) of the mechanical behaviour and magnetic field simulations and experimental results from a generator. Several design changes were implemented to maximise the conversion of magnetic energy into generated power and a maximum power output of 17.8”W was achieved at a resonant frequency of 56.6Hz and an applied acceleration of 60mg (g = 9.81ms-2)

    A novel fabrication process for capacitive cantilever structures for smart fabric applications

    Get PDF
    This paper reports, for the first time, capacitive freestanding cantilever beams fabricated by screen printing sacrificial and structural materials onto a fabric/textile. Unlike traditional weaving process, the device will be screen printed layer by layer with desired pattern onto the fabric substrate. Free standing structures will be fabricated directly onto fabrics rather than other methods such as bonding or embedding. In addition, a low temperature removable sacrificial material capable for the removal conditions on fabrics will also be reported

    Screen printed flexible Bi2Te3-Sb2Te3 based thermoelectric generator

    No full text
    This paper reports the fabrication and testing of Bismuth Tellurium (Bi2Te3) – Antimony Tellurium (Sb2Te3) based thermocouples using screen printing technology. In this study, screen printable thermoelectric pastes were developed and the transport properties of cured material were measured. The dimension of each planer thermoleg is 39.3 mm × 3 mm with a thickness of 67 ”m for Bi2Te3 leg and 62 ”m for Sb2Te3 leg. A single thermocouple with this dimension can generate a voltage of 6 mV and a peak output power of 48 nW at a temperature difference of 20°C. The calculated Seebeck coefficient of a single thermocouple is in the range of 262 to 282 ”V/K. The Seebeck coefficient at room temperature were measured to be -134 to -119 ”V/K and 128 to 134 ”V/K for Bi2Te3 and Sb2Te3 respectively. This work demonstrates that the low-cost screen printing technology and low-temperature materials are promising for the fabrication of flexible thermoelectric generators (TEGs)

    Screen Printed PZT Thick Films Using Composite Film Technology

    Get PDF
    A spin coating composite sol gel technique for producing lead zirconate titanate (PZT) thick films has been modified for use with screen printing techniques. The resulting screen printing technique can be used to produce 10 ?m thick films in a single print. The resultant films are porous but the density can be increased through the use of repeated sol infiltration/pyrolysis treatments to yield a high density film. When fired at 710°C the composite screen printed films have dielectric and piezoelectric properties comparable to, or exceeding, those of films produced using a 'conventional' powder/glass frit/oil ink and fired at 890°C

    An Integrated Approach to Energy Harvester Modeling and Performance Optimization

    No full text
    This paper proposes an integrated approach to energy harvester (EH) modeling and performance optimization where the complete mixed physical-domain EH (micro generator, voltage booster, storage element and load) can be modeled and optimized. We show that electrical equivalent models of the micro generator are inadequate for accurate prediction of the voltage booster’s performance. Through the use of hardware description language (HDL) we demonstrate that modeling the micro generator with analytical equations in the mechanical and magnetic domains provide an accurate model which has been validated in practice. Another key feature of the integrated approach is that it facilitates the incorporation of performance enhanced optimization, which as will be demonstrated is necessary due to the mechanicalelectrical interactions of an EH. A case study of a state-of-the-art vibration-based electromagnetic EH has been presented. We show that performance optimization can increase the energy harvesting rate by about 40%

    Integrated approach to energy harvester mixed technology modelling and performance optimisation

    No full text
    An energy harvester is a system consisting of several components from different physical domains including mechanical, magnetic and electrical as well as the external circuits which regulate and store the generated energy. To design highly efficient energy harvesters, we believe that the various components of the energy harvesters need to be modelled together and in systematic manner using one simulation platform. We propose an accurate HDL model for the energy harvester and demonstrate its accuracy by validating it experimentally and comparing it with recently reported models. It is crucial to consider the various parts of the energy harvester in the context of a complete system, or else the gain at one part may come at the price of efficiency loss else where, rending the energy harvester much less efficient than before. The close mechanical-electrical interaction that takes place in energy harvesters, often lead to significant performance loss when the various parts of the energy harvesters are combined. Therefore, to address the performance loss, we propose an integrated approach to the energy harvester modelling and performance optimisation and demonstrate the effectiveness of employing such an approach by showing that it is possible to improve the performance of vibration-based energy harvester, in terms of the effective energy stored in the super-capacitor, by 33% through optimising the micro-generator mechanical parameters and the voltage booster circuit components
    • 

    corecore