3 research outputs found

    Hydrothermal circulation within the Endeavour Segment, Juan de Fuca Ridge

    Get PDF
    Author Posting. Ā© American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 11 (2010): Q05002, doi:10.1029/2009GC002957.Areas of the seafloor at mid-ocean ridges where hydrothermal vents discharge are easily recognized by the dramatic biological, physical, and chemical processes that characterize such sites. Locations where seawater flows into the seafloor to recharge hydrothermal cells within the crustal reservoir are by contrast almost invisible but can be indirectly identified by a systematic grid of conductive heat flow measurements. An array of conductive heat flow stations in the Endeavour axial valley of the Juan de Fuca Ridge has identified recharge zones that appear to represent a nested system of fluid circulation paths. At the scale of an axial rift valley, conductive heat flow data indicate a general cross-valley fluid flow, where seawater enters the shallow subsurface crustal reservoir at the eastern wall of the Endeavour axial valley and undergoes a kilometer of horizontal transit beneath the valley floor, finally exiting as warm hydrothermal fluid discharge on the western valley bounding wall. Recharge zones also have been identified as located within an annular ring of very cold seafloor around the large Main Endeavour Hydrothermal Field, with seawater inflow occurring within faults that surround the fluid discharge sites. These conductive heat flow data are consistent with previous models where high-temperature fluid circulation cells beneath large hydrothermal vent fields may be composed of narrow vertical cylinders. Subsurface fluid circulation on the Endeavour Segment occurs at various crustal depths in three distinct modes: (1) general east to west flow across the entire valley floor, (2) in narrow cylinders that penetrate deeply to high-temperature heat sources, and (3) supplying low-temperature diffuse vents where seawater is entrained into the shallow uppermost crust by the adjacent high-temperature cylindrical systems. The systematic array of conductive heat flow measurements over the axial valley floor averaged āˆ¼150 mW/m2, suggesting that only about 3% of the total energy flux of ocean crustal formation is removed by conductive heat transfer, with the remainder being dissipated to overlying seawater by fluid advection.Funding was provided by NSF grants OCE0318566 and OCE0241294 and NSF/SGER grant OCE0902626

    Methane Plume Emissions Associated With Puget Sound Faults in the Cascadia Forearc

    No full text
    Abstract Methane gas plumes have been discovered to issue from the seafloor in the Puget Sound estuary. These gas emission sites are coā€located over traces of three major fault zones that fracture the entire forearc crust of the Cascadia Subduction Zone. Multibeam and singleā€beam sonar data from cruises conducted in years 2011, 2018, 2019, 2020, and 2021 identified the acoustic signature of 349 individual bubble plumes. Dissolved CH4 gas from the plumes combines to elevate seawater methane concentrations of the entire Puget Sound estuary. Fluid samples from adjacent terrestrial hot springs and deepā€water wells surrounding the estuary contain a heliumā€3 isotope signature, suggesting a deep fluid source located near the underlying Cascadia Subduction Zone plate interface. However, limited data from this pilot study suggest that Puget Sound seawater emission sites lack both similar chemical isotope signatures and elevated thermal anomalies that would be expected from association with a deep plateā€interface reservoir. A shallow reservoir within the Holocene sediments that cover the older Puget Sound basement with horizontal transfer to the thinly covered Alki Point and Kingston Arch anticlines is also a possibility, as has been suggested for other methane seep areas. The existence of vigorous marine methane plumes arising from areas of thin sediment cover associated with deeply penetrating forearc fault zones but presenting no thermal or chemical anomalies found in other similar forearc environments, remains an unresolved paradox
    corecore