62 research outputs found
The SAM Domain of Human TEL2 Can Abrogate Transcriptional Output from TEL1 (ETV-6) and ETS1/ETS2
Regulation of gene expression downstream of the Receptor Tyrosine Kinase signaling pathway in Drosophila relies on a transcriptional effector network featuring two conserved Ets family proteins, Yan and Pointed, known as TEL1 (ETV6) and ETS1/ETS2, respectively, in mammals. As in Drosophila, both TEL1 and ETS1/ETS2 operate as Ras pathway transcriptional effectors and misregulated activity of either factor has been implicated in many human leukemias and solid tumors. Providing essential regulation to the Drosophila network, direct interactions with the SAM domain protein Mae attenuate both Yan-mediated repression and PointedP2-mediated transcriptional activation. Given the critical contributions of Mae to the Drosophila circuitry, we investigated whether the human Ets factors TEL1 and ETS1/ETS2 could be subject to analogous regulation. Here we demonstrate that the SAM domain of human TEL2 can inhibit the transcriptional activities of ETS1/2 and TEL1. Drosophila Mae can also attenuate human ETS1/ETS2 function, suggesting there could be cross-species conservation of underlying mechanism. In contrast, Mae is not an effective inhibitor of TEL1, suggesting the mode of TEL2SAM-mediated inhibition of TEL1 may be distinct from how Drosophila Mae antagonizes Yan. Together our results reveal both further similarities and new differences between the mammalian and Drosophila networks and more broadly suggest that SAM domain-mediated interactions could provide an effective mechanism for modulating output from the TEL1 and ETS1/2 oncogenes
Drosophila Eggshell Production: Identification of New Genes and Coordination by Pxt
Drosophila ovarian follicles complete development using a spatially and temporally controlled maturation process in which they resume meiosis and secrete a multi-layered, protective eggshell before undergoing arrest and/or ovulation. Microarray analysis revealed more than 150 genes that are expressed in a stage-specific manner during the last 24 hours of follicle development. These include all 30 previously known eggshell genes, as well as 19 new candidate chorion genes and 100 other genes likely to participate in maturation. Mutations in pxt, encoding a putative Drosophila cyclooxygenase, cause many transcripts to begin expression prematurely, and are associated with eggshell defects. Somatic activity of Pxt is required, as RNAi knockdown of pxt in the follicle cells recapitulates both the temporal expression and eggshell defects. One of the temporally regulated genes, cyp18a1, which encodes a cytochromome P450 protein mediating ecdysone turnover, is downregulated in pxt mutant follicles, and cyp18a1 mutation itself alters eggshell gene expression. These studies further define the molecular program of Drosophila follicle maturation and support the idea that it is coordinated by lipid and steroid hormonal signals
Crosstalk between the EGFR and other signalling pathways at the level of the global transcriptional corepressor Groucho/TLE
In this minireview, we briefly revisit the Drosophila Notch and epidermal growth factor receptor pathways, and relate to the relationship between them. We then mainly focus on the involvement of Groucho (Gro)/TLE, a global developmental corepressor, in these pathways. In particular, we discuss Gro/TLE's role at the junction between these two signal transduction cascades
The EYA Tyrosine Phosphatase Activity Is Pro-Angiogenic and Is Inhibited by Benzbromarone
Eyes Absents (EYA) are multifunctional proteins best known for their role in organogenesis. There is accumulating evidence that overexpression of EYAs in breast and ovarian cancers, and in malignant peripheral nerve sheath tumors, correlates with tumor growth and increased metastasis. The EYA protein is both a transcriptional activator and a tyrosine phosphatase, and the tyrosine phosphatase activity promotes single cell motility of mammary epithelial cells. Since EYAs are expressed in vascular endothelial cells and cell motility is a critical feature of angiogenesis we investigated the role of EYAs in this process. Using RNA interference techniques we show that EYA3 depletion in human umbilical vein endothelial cells inhibits transwell migration as well as Matrigel-induced tube formation. To specifically query the role of the EYA tyrosine phosphatase activity we employed a chemical biology approach. Through an experimental screen the uricosuric agents Benzbromarone and Benzarone were found to be potent EYA inhibitors, and Benzarone in particular exhibited selectivity towards EYA versus a representative classical protein tyrosine phosphatase, PTP1B. These compounds inhibit the motility of mammary epithelial cells over-expressing EYA2 as well as the motility of endothelial cells. Furthermore, they attenuate tubulogenesis in matrigel and sprouting angiogenesis in the ex vivo aortic ring assay in a dose-dependent fashion. The anti-angiogenic effect of the inhibitors was also demonstrated in vivo, as treatment of zebrafish embryos led to significant and dose-dependent defects in the developing vasculature. Taken together our results demonstrate that the EYA tyrosine phosphatase activity is pro-angiogenic and that Benzbromarone and Benzarone are attractive candidates for repurposing as drugs for the treatment of cancer metastasis, tumor angiogenesis, and vasculopathies
Molecular mechanisms of EGF signaling-dependent regulation of pipe, a gene crucial for dorsoventral axis formation in Drosophila
During Drosophila oogenesis the expression of the sulfotransferase Pipe in ventral follicle cells is crucial for dorsoventral axis formation. Pipe modifies proteins that are incorporated in the ventral eggshell and activate Toll signaling which in turn initiates embryonic dorsoventral patterning. Ventral pipe expression is the result of an oocyte-derived EGF signal which down-regulates pipe in dorsal follicle cells. The analysis of mutant follicle cell clones reveals that none of the transcription factors known to act downstream of EGF signaling in Drosophila is required or sufficient for pipe regulation. However, the pipe cis-regulatory region harbors a 31-bp element which is essential for pipe repression, and ovarian extracts contain a protein that binds this element. Thus, EGF signaling does not act by down-regulating an activator of pipe as previously suggested but rather by activating a repressor. Surprisingly, this repressor acts independent of the common co-repressors Groucho or CtBP
Epigenomic analysis of aberrantly methylated genes in colorectal cancer identifies genes commonly affected by epigenetic alterations.
Methylation profiling based on bead-chip arrays is an effective method for screening aberrantly methylated genes in CRC. In addition, we identified novel methylated genes that are candidate diagnostic or prognostic markers for CRC
Enhanced Longevity by Ibuprofen, Conserved in Multiple Species, Occurs in Yeast through Inhibition of Tryptophan Import
The common non-steroidal anti-inflammatory drug ibuprofen has been associated with a reduced risk of some age-related pathologies. However, a general pro-longevity role for ibuprofen and its mechanistic basis remains unclear. Here we show that ibuprofen increased the lifespan of Saccharomyces cerevisiae, Caenorhabditis elegans and Drosophila melanogaster, indicative of conserved eukaryotic longevity effects. Studies in yeast indicate that ibuprofen destabilizes the Tat2p permease and inhibits tryptophan uptake. Loss of Tat2p increased replicative lifespan (RLS), but ibuprofen did not increase RLS when Tat2p was stabilized or in an already long-lived strain background impaired for aromatic amino acid uptake. Concomitant with lifespan extension, ibuprofen moderately reduced cell size at birth, leading to a delay in the G1 phase of the cell cycle. Similar changes in cell cycle progression were evident in a large dataset of replicatively long-lived yeast deletion strains. These results point to fundamental cell cycle signatures linked with longevity, implicate aromatic amino acid import in aging and identify a largely safe drug that extends lifespan across different kingdoms of life.The open access fee for this work was funded through the Texas A&M University Open Access to Knowledge (OAK) Fund
Prostaglandins regulate nuclear localization of Fascin and its function in nucleolar architecture
Fascin, a highly conserved actin-bundling protein, localizes and functions at new cellular sites in both Drosophila and multiple mammalian cell types. During Drosophila follicle development, in addition to being cytoplasmic, Fascin is in the nuclei of the germline-derived nurse cells during stages 10Bβ12 (S10Bβ12) and at the nuclear periphery during stage 13 (S13). This localization is specific to Fascin, as other actin-binding proteins, Villin and Profilin, do not exhibit the same subcellular distribution. In addition, localization of fascin1 to the nucleus and nuclear periphery is observed in multiple mammalian cell types. Thus the regulation and function of Fascin at these new cellular locations is likely to be highly conserved. In Drosophila, loss of prostaglandin signaling causes a global reduction in nuclear Fascin and a failure to relocalize to the nuclear periphery. Alterations in nuclear Fascin levels result in defects in nucleolar morphology in both Drosophila follicles and cultured mammalian cells, suggesting that nuclear Fascin plays an important role in nucleolar architecture. Given the numerous roles of Fascin in development and disease, including cancer, our novel finding that Fascin has functions within the nucleus sheds new light on the potential roles of Fascin in these contexts
- β¦