2,293 research outputs found

    FBOTs and AT2018cow following electron-capture collapse of merged white dwarfs

    Get PDF
    We suggest that fast-rising blue optical transients (FBOTs) and the brightest event of the class AT2018cow result from an electron-capture collapse to a \NS\ following a merger of a massive ONeMg white dwarf (WD) with another WD. Two distinct evolutionary channels lead to the disruption of the less massive WD during the merger and the formation of a shell burning non-degenerate star incorporating the ONeMg core. During the shell burning stage a large fraction of the envelope is lost to the wind, while mass and angular momentum are added to the core. As a result, the electron-capture collapse occurs with a small envelope mass, after ∼102−104\sim 10^2-10^4 years. During the formation of a neutron star as little as ∼10−2M⊙\sim 10^{-2} M_\odot of the material is ejected at the bounce-off with mildly relativistic velocities and total energy ∼\sim few 1050 10^{50} ergs. This ejecta becomes optically thin on a time scale of days - this is the FBOT. During the collapse, the neutron star is spun up and magnetic field is amplified. The ensuing fast magnetically-dominated relativistic wind from the newly formed neutron star shocks against the ejecta, and later against the wind. The radiation-dominated forward shock produces the long-lasting optical afterglow, while the termination shock of the relativistic wind produces the high energy emission in a manner similar to Pulsar Wind Nebulae. If the secondary WD was of the DA type, the wind will likely have ∼10−4M⊙\sim 10^{-4} M_\odot of hydrogen; this explains the appearance of hydrogen late in the afterglow spectrum. The model explains many of the puzzling properties of FBOTs/AT2018cow: host galaxies, a fast and light anisotropic ejecta producing a bright optical peak, afterglow high energy emission of similar luminosity to the optical, and late infra-red features.Comment: arXiv admin note: text overlap with arXiv:1709.0222

    The Evolution of the Type Ia Supernova Luminosity Function

    Get PDF
    Type Ia supernovae (SNe Ia) exhibit a wide diversity of peak luminosities and light curve shapes: the faintest SNe Ia are 10 times less luminous and evolve more rapidly than the brightest SNe Ia. Their differing characteristics also extend to their stellar age distributions, with fainter SNe Ia preferentially occurring in old stellar populations and vice versa. In this Letter, we quantify this SN Ia luminosity - stellar age connection using data from the Lick Observatory Supernova Search (LOSS). Our binary population synthesis calculations agree qualitatively with the observed trend in the >1 Gyr-old populations probed by LOSS if the majority of SNe Ia arise from prompt detonations of sub-Chandrasekhar mass white dwarfs (WDs) in double WD systems. Under appropriate assumptions, we show that double WD systems with less massive primaries, which yield fainter SNe Ia, interact and explode at older ages than those with more massive primaries. We find that prompt detonations in double WD systems are capable of reproducing the observed evolution of the SN Ia luminosity function, a constraint that any SN Ia progenitor scenario must confront.Comment: Accepted for publication in ApJL. Minor changes to previous version for clarity. Data used to construct the observational CDFs in Figure 4 are available in an ancillary fil

    Neutron star - white dwarf mergers: Early evolution, physical properties, and outcomes

    Get PDF
    Neutron-star (NS) - white-dwarf (WD) mergers may give rise to observable explosive transients, but have been little explored. We use 2D coupled hydrodynamical-thermonuclear FLASH-code simulations to study the evolution of WD debris-disks formed following WD-disruptions by NSs. We use a 19-elements nuclear-network and a detailed equation-of-state to follow the evolution, complemented by a post-process analysis using a larger 125-isotopes nuclear-network. We consider a wide range of initial conditions and study the dependence of the results on the NS/WD masses (1.4−2M⊙1.4-2{\rm M_{\odot}}; 0.375−0.7 M⊙\,{\rm 0.375-0.7\,M_{\odot}}, respectively), WD-composition (CO/He/hybrid-He-CO) and the accretion-disk structure. We find that viscous inflow in the disk gives rise to continuous wind-outflow of mostly C/O material mixed with nuclear-burning products arising from a weak detonation occurring in the inner-region of the disk. We find that such transients are energetically weak (1048−104910^{48}-10^{49}ergs) compared with thermonuclear-supernovae (SNe), and are dominated by the (gravitational) accretion-energy. Although thermonuclear-detonations occur robustly in all of our simulations (besides the He-WD) they produce only little energy (1−10%(1-10\% of the kinetic energy) and 56Ni^{56}{\rm Ni} ejecta (few×10−4−10−3M⊙)\times10^{-4}-10^{-3}{\rm M_{\odot}}), with overall low ejecta masses of ∼0.01−0.1M⊙\sim0.01-0.1{\rm M_{\odot}}. Such explosions may produce rapidly-evolving transients, much shorter and fainter than regular type-Ia SNe. The composition and demographics of such SNe appear to be inconsistent with those of Ca-rich type Ib SNe. Though they might be related to the various classes of rapidly evolving SNe observed in recent years, they are likely to be fainter than the typical ones, and may therefore give rise a different class of potentially observable transients.Comment: MNRAS final versio

    Binary black hole mergers from field triples: properties, rates and the impact of stellar evolution

    Get PDF
    We consider the formation of binary black hole mergers through the evolution of field massive triple stars. In this scenario, favorable conditions for the inspiral of a black hole binary are initiated by its gravitational interaction with a distant companion, rather than by a common-envelope phase invoked in standard binary evolution models. We use a code that follows self-consistently the evolution of massive triple stars, combining the secular triple dynamics (Lidov-Kozai cycles) with stellar evolution. After a black hole triple is formed, its dynamical evolution is computed using either the orbit-averaged equations of motion, or a high-precision direct integrator for triples with weaker hierarchies for which the secular perturbation theory breaks down. Most black hole mergers in our models are produced in the latter non-secular dynamical regime. We derive the properties of the merging binaries and compute a black hole merger rate in the range (0.3- 1.3) Gpc^{-3}yr^{-1}, or up to ~2.5Gpc^{-3}yr^{-1} if the black hole orbital planes have initially random orientation. Finally, we show that black hole mergers from the triple channel have significantly higher eccentricities than those formed through the evolution of massive binaries or in dense star clusters. Measured eccentricities could therefore be used to uniquely identify binary mergers formed through the evolution of triple stars. While our results suggest up to ~10 detections per year with Advanced-LIGO, the high eccentricities could render the merging binaries harder to detect with planned space based interferometers such as LISA.Comment: Accepted for publication in ApJ. 10 pages, 6 figure

    MPICH-G2: A Grid-Enabled Implementation of the Message Passing Interface

    Full text link
    Application development for distributed computing "Grids" can benefit from tools that variously hide or enable application-level management of critical aspects of the heterogeneous environment. As part of an investigation of these issues, we have developed MPICH-G2, a Grid-enabled implementation of the Message Passing Interface (MPI) that allows a user to run MPI programs across multiple computers, at the same or different sites, using the same commands that would be used on a parallel computer. This library extends the Argonne MPICH implementation of MPI to use services provided by the Globus Toolkit for authentication, authorization, resource allocation, executable staging, and I/O, as well as for process creation, monitoring, and control. Various performance-critical operations, including startup and collective operations, are configured to exploit network topology information. The library also exploits MPI constructs for performance management; for example, the MPI communicator construct is used for application-level discovery of, and adaptation to, both network topology and network quality-of-service mechanisms. We describe the MPICH-G2 design and implementation, present performance results, and review application experiences, including record-setting distributed simulations.Comment: 20 pages, 8 figure

    The rate of WD-WD head-on collisions in isolated triples is too low to explain standard type Ia supernovae

    Full text link
    Type Ia supernovae (Ia-SNe) are thought to arise from the thermonuclear explosions of white dwarfs (WDs). The progenitors of such explosions are still highly debated; in particular the conditions leading to detonations in WDs are not well understood in most of the suggested progenitor models. Nevertheless, direct head-on collisions of two WDs were shown to give rise to detonations and produce Ia-SNe - like explosions, and were suggested as possible progenitors. The rates of such collisions in dense globular clusters are far below the observed rates of type Ia SNe, but it was suggested that quasi-secular evolution of hierarchical triples could produce a high rate of such collisions. Here we used detailed triple stellar evolution populations synthesis models coupled with dynamical secular evolution to calculate the rates of WD-WD collisions in triples and their properties. We explored a range of models with different realistic initial conditions and derived the expected SNe total mass, mass-ratio and delay time distributions for each of the models. We find that the SNe rate from WD-WD collisions is of the order of 0.1% of the observed Ia-SNe rate across all our models, and the delay-time distribution is almost uniform in time, and is inconsistent with observations. We conclude that SNe from WD-WD collisions in isolated triples can at most provide for a small fraction of Ia-SNe, and can not serve as the main progenitors of such explosions.Comment: 13 pages, 4 figures, submitted to A&

    Detecting hierarchical stellar systems with LISA

    Full text link
    A significant fraction of stars are members of gravitationally bound hierarchies containing three or more components. Almost all low mass stars in binaries with periods shorter three days are part of a hierarchical system. We therefore anticipate that a large fraction of compact galactic binaries detected by the Laser Interferometer Space Antenna (LISA) will be members of hierarchical triple or quadruple system. The acceleration imparted by the hierarchical companions can be detected in the gravitational wave signal for outer periods as large as 100 years. For systems with periods that are shorter than, or comparable to, the mission lifetime, it will be possible to measure the period and eccentricity of the outer orbit. LISA observations of hierarchical stellar systems will provide insight into stellar evolution, including the role that Kozai-Lidov oscillations play in driving systems towards merger.Comment: 15 pages, 14 figure
    • …
    corecore