1,243 research outputs found

    Infrared spectroscopy of simulated Martian surface materials

    Get PDF
    Mineralogy inferred from the Viking X-ray fluorescence spectrometry (XRFS) is compared with mineralogy indicated by spectral data. The comparison is done by taking laboratory spectra of Viking analog minerals. Both XRFS and infrared data are consistent with clays as the dominant SiO2 containing minerals on Mars. The X-ray fluorescence data might also be consistent with the dominance of certain mafic SiO2 igneous minerals, but the spectral data are probably inconsistent with such materials. Sulfates, inferred by XRFS, are consistent with the spectral data. Inferences following Mariner 9 that high-SiO2 minerals were important on Mars may have been biased by the presence of sulfates. Calcium carbonate, in the quantities indirectly suggested by XRFS are inconsistent with the spectral data, but smaller quantities of CaCO3 are consistent, as are large quantities of other carbonates

    Early climate on earth-reduced gas models and early climate on Mars-reduced gas and obliquity models

    Get PDF
    At high obliquity, Martian polar ground temperatures could exceed the melting point of ice for considerable periods of time (approximately 90 Earth days). Under special conditions ice itself might melt. Carbon dioxide adsorbed on the Martian regolith is not expected to buffer the seasonal pressure wave except in the unlikely event that the soil pore size is very large (50 micron). For a basaltic soil composition the maximum CO2 that could be desorbed over obliquity time scales due to thermal forces is a few millibars. At low obliquities the atmospheric pressures may drop, desorbing the soil. The only means to achieve higher CO2 pressures is to have much higher planet-wide temperatures due to some greenhouse effect, or to be at an epoch before the regolith or carbonates formed. The water ice budget between north and south polar caps was considered and summer sublimation rates imply that the ice could be exchanged between the poles during obliquity cycles. A critical factor in the polar cap water budget is the interaction of water and dust. The origin of the Martian polar laminae is probably due to variations in this interaction

    On the size and composition of particles in polar stratospheric clouds

    Get PDF
    Attenuation measurements of the solar radiation between 1.5 and 15 micron wavelengths were performed with the airborne (DC-8) JPL MARK 4 interferometer during the 1987 Antarctic Expedition. The opacities not only provide information about the abundance of stratospheric gases but also about the optical depths of polar stratospheric clouds (PSCs) at wavelengths of negligible gas absorption (windows). The optical depth of PSCs can be determined for each window once the background attenuation, due to air-molecules and aerosol has been filtered out with a simple extinction law. The ratio of optical thicknesses at different wavelengths reveals information about particle size and particle composition. Among the almost 700 measured spectra only a few PSC cases exist. PSC events are identified by sudden reductions in the spectrally integrated intensity value and are also verified with backscattering data from an upward directed lidar instrument, that was mounted on the DC-8. For the selected case on September 21st at 14.40 GMT, lidar data indicate an optically thin cloud at 18k and later an additional optically thick cloud at 15 km altitude. All results still suffer from: (1) often arbitrary definitions of a clear case, that often already may have contained PSC particles and (2) noise problems that restrict the calculations of optical depths to values larger than 0.001. Once these problems are handled, this instrument may become a valuable tool towards a better understanding of the role PSCs play in the Antarctic stratosphere

    Long term time-lapse microgravity and geotechnical monitoring of relict salt-mines, Marston, Cheshire, UK.

    Get PDF
    The area around the town of Northwich in Cheshire, U. K., has a long history of catastrophic ground subsidence caused by a combination of natural dissolution and collapsing abandoned mine workings within the underlying Triassic halite bedrock geology. In the village of Marston, the Trent and Mersey Canal crosses several abandoned salt mine workings and previously subsiding areas, the canal being breached by a catastrophic subsidence event in 1953. This canal section is the focus of a long-term monitoring study by conventional geotechnical topographic and microgravity surveys. Results of 20 years of topographic time-lapse surveys indicate specific areas of local subsidence that could not be predicted by available site and mine abandonment plan and shaft data. Subsidence has subsequently necessitated four phases of temporary canal bank remediation. Ten years of microgravity time-lapse data have recorded major deepening negative anomalies in specific sections that correlate with topographic data. Gravity 2D modeling using available site data found upwardly propagating voids, and associated collapse material produced a good match with observed microgravity data. Intrusive investigations have confirmed a void at the major anomaly. The advantages of undertaking such long-term studies for near-surface geophysicists, geotechnical engineers, and researchers working in other application areas are discussed

    Reducing the impact of source brightness fluctuations on spectra obtained by Fourier-transform spectrometry

    Get PDF
    We present a method to reduce the impact of source brightness fluctuations (SBFs) on spectra recorded by Fourier-transform spectrometry (FTS). Interferograms are recorded without AC coupling of the detector signal (DC mode). The SBF are determined by low-pass filtering of the DC interferograms, which are then reweighted by the low-pass, smoothed signal. Atmospheric solar absorption interferograms recorded in DC mode have been processed with and without this technique, and we demonstrate its efficacy in producing more consistent retrievals of atmospheric composition. We show that the reweighting algorithm improves retrievals from interferograms subject to both gray and nongray intensity fluctuations, making the algorithm applicable to atmospheric data contaminated by significant amounts of aerosol or cloud cover

    The NASA-Ames Research Center stratospheric aerosol model. 2. Sensitivity studies and comparison with observatories

    Get PDF
    Sensitivity tests were performed on a one-dimensional, physical-chemical model of the unperturbed stratospheric aerosols, and model calculations were compared with observations. The tests and comparisons suggest that coagulation controls the particle number mixing ratio, although the number of condensation nuclei at the tropopause and the diffusion coefficient at high altitudes are also important. The sulfur gas source strength and the aerosol residence time are much more important than the supply of condensation nuclei in establishing mass and large particle concentrations. The particle size is also controlled mainly by gas supply and residence time. In situ observations of the aerosols and laboratory measurements of aerosols, parameters that can provide further information about the physics and chemistry of the stratosphere and the aerosols found there are provided

    New observations of stratospheric N2O5

    Get PDF
    The unequivocal detection of N2O5 in the stratosphere was reported by Toon et al. based on measurements of the absorption by the N2O5 bands at 1246 and 1720/cm in solar occulation spectra recorded at sunrise near 47 S latitude by the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment during the Spacelab 3 (SL3) shuttle mission. Additional measurements and analysis of stratospheric N2O5 derived from the ATMOS/SL3 spectra are reported. The primary results are the detection and measurement of N2O5 absorption at sunset in the lower stratosphere, the inversion of a precise (approximately 10 percent) N2O5 sunrise vertical distribution between 25.5 and 37.5 km altitude, and the identification and measurement of absorption by the N2O5 743/cm band at sunrise. Assuming 4.32 x 10(sup -17) and 4.36 x 10(sup -17)/cm/molecule/sq cm respectively for the integrated intensities of the 1246 and 743/cm bands at stratospheric temperatures, retrieved volume mixing ratios in parts per billion by volume (ppbv) at sunrise (47 S latitude) are 1.32 + or - 0.34 at 37.5 km, 1.53 + or - 0.35 at 35.5 km, 1.63 + or - 0.36 at 33.5 km, 1.60 + or - 0.34 at 31.5 km, 1.43 + or - 0.30 at 29.5 km, 1.15 + or - 0.24 at 27.5 km, and 0.73 + or - 0.15 at 25.5 km. Retrieved VMRs in ppbv at sunset (30 N latitude) are 0.13 + or - 0.05 at 29.5 km, 0.14 + or - 0.05 at 27.5 km, and 0.10 + or - 0.04 at 25.5 km. Quoted error limits (1 sigma) include the error in the assumed band intensities (approximately 20 percent). Within the error limits of the measurements, the inferred mixing ratios at sunrise agree with diurnal photochemical model predictions obtained by two groups using current photochemical data. The measured mixing ratios at sunset are lower than the model predictions with differences of about a factor of 2 at 25 km altitude

    Disentangling chlorophyll fluorescence from atmospheric scattering effects in O_2 A‐band spectra of reflected sun‐light

    Get PDF
    Global retrieval of solar induced fluorescence emitted by terrestrial vegetation can provide an unprecedented measure for photosynthetic efficiency. The GOSAT (JAXA, launched Feb. 2009) and OCO-2 (NASA, to be launched 2013) satellites record high-resolution spectra in the O_2 A-band region, overlapping part of the chlorophyll fluorescence spectrum. We show that fluorescence cannot be unambiguously discriminated from atmospheric scattering effects using O_2 absorption lines. This can cause systematic biases in retrieved scattering parameters (aerosol optical thickness, aerosol height, surface pressure, surface albedo) if fluorescence is neglected. Hence, we demonstrate an efficient alternative fluorescence least-squares retrieval method based solely on strong Fraunhofer lines in the vicinity of the O_2 A-band, disentangling fluorescence from scattering effects. Not only does the Fraunhofer line fit produce a more accurate estimate of fluorescence emission, but it also allows improved retrievals of atmospheric aerosols from the O_2 A-band

    Micromachined capacitive long-range displacement sensor

    Get PDF
    First measurement results are presented for a surface-micromachined long-range (50– 100 μm) periodic capacitive position sensor. The sensor consists of two periodic geometries (period = 10 μm) sliding along each other with minimum spacing of about 1.5 μm. The relative displacement between the two, results in a periodic change in capacitance. An electrostatic comb-drive actuator is employed to generate displacements. Measured maximum capacitance change ΔC=0.72 fF corresponds to simulation results but needs better shielding from external noise sources. The results show this sensorconcept can potentially lead towards long-range nano-positioning control of microactuator systems
    corecore