1,109 research outputs found

    Quantum Einstein Gravity as a Topological Field Theory

    Full text link
    General covariance in quantum gravity is seen once one integrates over all possible metrics. In recent years topological field theories have given us a different route to general covariance without integrating over all possible metrics. Here we argue that Einstein quantum gravity may be viewed as a topological field theory provided a certain constrant from the path integral measure is satisfied.Comment: 10 pages, LaTe

    Topology, Quantum Gravity and Particle Physics

    Get PDF
    It is argued that quantum gravity has an interpretation as a topological field theory provided a certain constraint from the path intergral measure is respected. The constraint forces us to couple gauge and matter fields to gravity for space - time dimensions different from 3. We then discuss possible models which may be relevant to our universe.Comment: 18 pages, LaTeX. Replaced version corrects typos and has additional reference

    Nitrogen Incorporation in CH_4-N_2 Photochemical Aerosol Produced by Far Ultraviolet Irradiation

    Get PDF
    Nitrile incorporation into Titan aerosol accompanying hydrocarbon chemistry is thought to be driven by extreme UV wavelengths (λ120 nm is presently unaccounted for in atmospheric photochemical models. We suggest that reaction with CH radicals produced from CH_4 photolysis may provide a mechanism for incorporating N into the molecular structure of the aerosol. Further work is needed to understand the chemistry involved, as these processes may have significant implications for how we view prebiotic chemistry on early Earth and similar planets. Key Words: Titan—Photochemical aerosol—CH_4-N_2 photolysis—Far UV—Nitrogen activation

    Ice in the Antarctic polar stratosphere

    Get PDF
    On six occasions during the 1987 Airborne Antarctic Ozone Experiment, the Polar Stratospheric Cloud (PSC) ice crystals were replicated over the Palmer Peninsula at approximately 70 deg South. The sampling altitude was approximately 60 to 65 thousand feet, the temperature range was -83.5 to -72C and the atmosphere was subsaturated in all cases. The collected crystals were predominantly complete and hollow prismatic columns with maximum dimensions up to 217 microns. Evidence of scavenging of submicron particles was detected on several crystals. While the replicated crystal sizes were larger than anticipated, their relatively low concentration results in a total surface area less than one tenth that of the sampled aerosol particles. The presence of large crystals suggest that PSC ice crystals can play a very important role in stratospheric dehydration processes

    Disentangling chlorophyll fluorescence from atmospheric scattering effects in O_2 A‐band spectra of reflected sun‐light

    Get PDF
    Global retrieval of solar induced fluorescence emitted by terrestrial vegetation can provide an unprecedented measure for photosynthetic efficiency. The GOSAT (JAXA, launched Feb. 2009) and OCO-2 (NASA, to be launched 2013) satellites record high-resolution spectra in the O_2 A-band region, overlapping part of the chlorophyll fluorescence spectrum. We show that fluorescence cannot be unambiguously discriminated from atmospheric scattering effects using O_2 absorption lines. This can cause systematic biases in retrieved scattering parameters (aerosol optical thickness, aerosol height, surface pressure, surface albedo) if fluorescence is neglected. Hence, we demonstrate an efficient alternative fluorescence least-squares retrieval method based solely on strong Fraunhofer lines in the vicinity of the O_2 A-band, disentangling fluorescence from scattering effects. Not only does the Fraunhofer line fit produce a more accurate estimate of fluorescence emission, but it also allows improved retrievals of atmospheric aerosols from the O_2 A-band

    New observations of stratospheric N2O5

    Get PDF
    The unequivocal detection of N2O5 in the stratosphere was reported by Toon et al. based on measurements of the absorption by the N2O5 bands at 1246 and 1720/cm in solar occulation spectra recorded at sunrise near 47 S latitude by the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment during the Spacelab 3 (SL3) shuttle mission. Additional measurements and analysis of stratospheric N2O5 derived from the ATMOS/SL3 spectra are reported. The primary results are the detection and measurement of N2O5 absorption at sunset in the lower stratosphere, the inversion of a precise (approximately 10 percent) N2O5 sunrise vertical distribution between 25.5 and 37.5 km altitude, and the identification and measurement of absorption by the N2O5 743/cm band at sunrise. Assuming 4.32 x 10(sup -17) and 4.36 x 10(sup -17)/cm/molecule/sq cm respectively for the integrated intensities of the 1246 and 743/cm bands at stratospheric temperatures, retrieved volume mixing ratios in parts per billion by volume (ppbv) at sunrise (47 S latitude) are 1.32 + or - 0.34 at 37.5 km, 1.53 + or - 0.35 at 35.5 km, 1.63 + or - 0.36 at 33.5 km, 1.60 + or - 0.34 at 31.5 km, 1.43 + or - 0.30 at 29.5 km, 1.15 + or - 0.24 at 27.5 km, and 0.73 + or - 0.15 at 25.5 km. Retrieved VMRs in ppbv at sunset (30 N latitude) are 0.13 + or - 0.05 at 29.5 km, 0.14 + or - 0.05 at 27.5 km, and 0.10 + or - 0.04 at 25.5 km. Quoted error limits (1 sigma) include the error in the assumed band intensities (approximately 20 percent). Within the error limits of the measurements, the inferred mixing ratios at sunrise agree with diurnal photochemical model predictions obtained by two groups using current photochemical data. The measured mixing ratios at sunset are lower than the model predictions with differences of about a factor of 2 at 25 km altitude

    Evolutionary consequences of shifts to bird-pollination in the Australian pea-flowered legumes (Mirbelieae and Bossiaeeae)

    No full text
    BACKGROUND Interactions with pollinators are proposed to be one of the major drivers of diversity in angiosperms. Specialised interactions with pollinators can lead to specialised floral traits, which collectively are known as a pollination syndrome. While it is thought that specialisation to a pollinator can lead to either an increase in diversity or in some cases a dead end, it is not well understood how transitions among specialised pollinators contribute to changes in diversity. Here, we use evolutionary trait reconstruction of bee-pollination and bird-pollination syndromes in Australian egg-and-bacon peas (Mirbelieae and Bossiaeeae) to test whether transitions between pollination syndromes is correlated with changes in species diversity. We also test for directionality in transitions that might be caused by selection by pollinators or by an evolutionary ratchet in which reversals to the original pollination syndrome are not possible. RESULTS Trait reconstructions of Australian egg-and-bacon peas suggest that bee-pollination syndrome is the ancestral form and that there has been replicated evolution of bird-pollination syndromes. Reconstructions indicate potential reversals from bird- to bee-pollination syndromes but this is not consistent with morphology. Species diversity of bird-pollination syndrome clades is lower than that of their bee-pollination syndrome sisters.We estimated the earliest transitions from bee- to bird-pollination syndrome occurred between 30.8 Ma and 10.4 Ma. Geographical structuring of pollination syndromes was found; there were fewer bird-pollination species in the Australian southeast temperate region compared to other regions of Australia. CONCLUSIONS A consistent decrease in diversification rate coincident with switches to bird pollination might be explained if greater dispersal by bird pollinators results in higher levels of connectivity among populations and reduced chances of allopatric speciation.The earliest transitions overlap with the early diversification of Australian honeyeaters - the major lineage of pollinating birds in Australia. Our findings are consistent with the idea that environment and availability of pollinators are important in the evolution of pollination syndromes. Changes in flower traits as a result of transitions to bird-pollination syndrome might also limit reversals to a bee-pollination syndrome.Funding was provided by the Australian Research Council (grant number: DP0985473)

    Stratospheric aerosol modification by supersonic transport operations with climate implications

    Get PDF
    The potential effects on stratospheric aerosois of supersonic transport emissions of sulfur dioxide gas and submicron size soot granules are estimated. An interactive particle-gas model of the stratospheric aerosol is used to compute particle changes due to exhaust emissions, and an accurate radiation transport model is used to compute the attendant surface temperature changes. It is shown that a fleet of several hundred supersonic aircraft, operating daily at 20 km, could produce about a 20% increase in the concentration of large particles in the stratosphere. Aerosol increases of this magnitude would reduce the global surface temperature by less than 0.01 K

    Tropospheric methane retrieved from ground-based near-IR solar absorption spectra

    Get PDF
    High-resolution near-infrared solar absorption spectra recorded between 1977 and 1995 at the Kitt Peak National Solar Observatory are analyzed to retrieve column abundances of methane (CH_4), hydrogen fluoride (HF), and oxygen (O_2). Employing a stratospheric “slope equilibrium” relationship between CH_4 and HF, the varying contribution of stratospheric CH_4 to the total column is inferred. Variations in the CH_4 column due to changes in surface pressure are determined from the O_2 column abundances. By this technique, CH_4 tropospheric volume mixing ratios are determined with a precision of ∼0.5%. These display behavior similar to Mauna Loa in situ surface measurements, with a seasonal peak-to-peak amplitude of approximately 30 ppbv and a nearly linear increase between 1977 and 1983 of 18.0 ± 0.8 ppbv yr^(−1), slowing significantly after 1990
    corecore