28 research outputs found

    Depletion of CD40 on CD11c(+) cells worsens the metabolic syndrome and ameliorates hepatic inflammation during NASH

    Get PDF
    The co-stimulatory CD40-CD40L dyad plays a central role in fine-tuning immune reactions, including obesity-induced inflammation. Genetic ablation of CD40L reduced adipose tissue inflammation, while absence of CD40 resulted in aggravated metabolic dysfunction in mice. During obesity, CD40 expressing CD11c(+) dendritic cells (DC) and macrophages accumulate in adipose tissue and liver. We investigated the role of CD40(+)CD11c(+) cells in the metabolic syndrome and nonalcoholic steatohepatitis (NASH). DC-CD40-ko mice (CD40(fl/fl)CD11c(cre)) mice were subjected to obesity or NASH. Obesity and insulin resistance were induced by feeding mice a 54% high fat diet (HFD). NASH was induced by feeding mice a diet containing 40% fat, 20% fructose and 2% cholesterol. CD40(fl/fl)CD11c(cre )mice fed a HFD displayed increased weight gain, increased adipocyte size, and worsened insulin resistance. Moreover, CD40(fl/fl)CD11c(cre )mice had higher plasma and hepatic cholesterol levels and developed profound liver steatosis. Overall, regulatory T cell numbers were decreased in these mice. In NASH, absence of CD40 on CD11c(+) cells slightly decreased liver inflammation but did not affect liver lipid accumulation. Our experiments suggest that CD40 expressing CD11c(+) cells can act as a double-edged sword: CD40 expressing CD11c(+) cells contribute to liver inflammation during NASH but are protective against the metabolic syndrome via induction of regulatory T cells

    Inhibition of NET Release Fails to Reduce Adipose Tissue Inflammation in Mice

    Get PDF
    Obesity-associated diseases such as Type 2 diabetes, liver disease and cardiovascular diseases are profoundly mediated by low-grade chronic inflammation of the adipose tissue. Recently, the importance of neutrophils and neutrophil-derived myeloperoxidase and neutrophil elastase on the induction of insulin resistance has been established. Since neutrophil elastase and myeloperoxidase are critically involved in the release of neutrophil extracellular traps (NETs), we here hypothesized that NETs may be relevant to early adipose tissue inflammation. Thus, we tested the effect of the Peptidyl Arginine Deiminase 4 inhibitor Cl-amidine, a compound preventing histone citrullination and subsequent NET release, in a mouse model of adipose tissue inflammation. C57BL6 mice received a 60% high fat diet for 10 weeks and were treated with either Cl-amidine or vehicle. Flow cytometry of adipose tissue and liver, immunohistological analysis and glucose and insulin tolerance tests were performed to determine the effect of the treatment and diet. Although high fat diet feeding induced insulin resistance no significant effect was observed between the treatment groups. In addition no effect was found in leukocyte infiltration and activation in the adipose tissue and liver. Therefore we concluded that inhibition of neutrophil extracellular trap formation may have no clinical relevance for early obesity-mediated pathogenesis of the adipose tissue and liver

    Inhibition of CD40-TRAF6 interactions by the small molecule inhibitor 6877002 reduces neuroinflammation

    Get PDF
    Background: The influx of leukocytes into the central nervous system (CNS) is a key hallmark of the chronic neuro-inflammatory disease multiple sclerosis (MS). Strategies that aim to inhibit leukocyte migration across the blood-brain barrier (BBB) are therefore regarded as promising therapeutic approaches to combat MS. As the CD40L-CD40 dyad signals via TNF receptor-associated factor 6 (TRAF6) in myeloid cells to induce inflammation and leukocyte trafficking, we explored the hypothesis that specific inhibition of CD40-TRAF6 interactions can ameliorate neuro-inflammation. Methods: Human monocytes were treated with a small molecule inhibitor (SMI) of CD40-TRAF6 interactions (6877002), and migration capacity across human brain endothelial cells was measured. To test the therapeutic potential of the CD40-TRAF6-blocking SMI under neuro-inflammatory conditions in vivo, Lewis rats and C57BL/6J mice were subjected to acute experimental autoimmune encephalomyelitis (EAE) and treated with SMI 6877002 for 6 days (rats) or 3 weeks (mice). Results: We here show that a SMI of CD40-TRAF6 interactions (6877002) strongly and dose-dependently reduces trans-endothelial migration of human monocytes. Moreover, upon SMI treatment, monocytes displayed a decreased production of ROS, tumor necrosis factor (TNF), and interleukin (IL)-6, whereas the production of the anti-inflammatory cytokine IL-10 was increased. Disease severity of EAE was reduced upon SMI treatment in rats, but not in mice. However, a significant reduction in monocyte-derived macrophages, but not in T cells, that had infiltrated the CNS was eminent in both models. Conclusions: Together, our results indicate that SMI-mediated inhibition of the CD40-TRAF6 pathway skews human monocytes towards anti-inflammatory cells with reduced trans-endothelial migration capacity, and is able to reduce CNS-infiltrated monocyte-derived macrophages during neuro-inflammation, but minimally ameliorates EAE disease severity. We therefore conclude that SMI-mediated inhibition of the CD40-TRAF6 pathway may represent a beneficial treatment strategy to reduce monocyte recruitment and macrophage activation in the CNS and has the potential to be used as a co-treatment to combat MS

    Deficiency of T cell CD40L has minor beneficial effects on obesity-induced metabolic dysfunction

    Get PDF
    Objective Obesity-associated metabolic dysfunction increases the risk of multiple diseases such as type 2 diabetes and cardiovascular disease. The importance of the co-stimulatory CD40-CD40L dyad in diet-induced obesity (DIO), with opposing phenotypes arising when either the receptor (aggravating) or the ligand (protective) is deleted, has been described previously. The functions of CD40 and CD40L are cell type dependent. As co-stimulation via T cell-mediated CD40L is essential for driving inflammation, we here investigate the role of T cell CD40L in DIO. Research design and methods CD4CreCD40L fl/fl mice on a C57BL/6 background were generated and subjected to DIO by administration of 15 weeks of high fat diet (HFD). Results HFD-fed CD4CreCD40L fl/fl mice had similar weight gain, adipocyte sizes, plasma cholesterol and triglyceride levels as their wild-type (WT) counterparts. Insulin and glucose tolerance were comparable, although CD4CreCD40L fl/fl mice did have a decreased plasma insulin concentration, suggesting a minor improvement of insulin resistance. Furthermore, although the degree of hepatosteatosis was similar in both genotypes, the gene expression of fatty acid synthase 1 and ATP-citrate lyase had decreased, whereas expression of peroxisome proliferator-activated receptor-α had increased in livers of CD4CreCD40L fl/fl mice, suggesting decreased hepatic lipid uptake in absence of T cell CD40L. Moreover, CD4CreCD40L fl/fl mice displayed significantly lower numbers of effector memory CD4 + T cells and regulatory T cells in blood and lymphoid organs compared with WT. However, immune cell composition and inflammatory status of the adipose tissue was similar in CD4CreCD40L fl/fl and WT mice. Conclusions T cell CD40L deficiency results in a minor improvement of insulin sensitivity and hepatic steatosis in DIO, despite the strong decrease in effector T cells and regulatory T cells in blood and lymphoid organs. Our data indicate that other CD40L-expressing cell types are more relevant in the pathogenesis of obesity-associated metabolic dysfunction

    Macrophage CD40 plays a minor role in obesity-induced metabolic dysfunction.

    No full text
    Obesity is a low-grade inflammatory disease that increases the risk for metabolic disorders. CD40-CD40L signaling plays a central role in obesity-induced inflammation. Genetic deficiency of CD40L in diet-induced obesity (DIO) ameliorates adipose tissue inflammation, hepatic steatosis and increases insulin sensitivity. Unexpectedly, absence of CD40 worsened insulin resistance and caused excessive adipose tissue inflammation and hepatosteatosis. To investigate whether deficiency of macrophage CD40 is responsible for the phenotype observed in the CD40-/- mice, we generated CD40flflLysMcre and fed them a standard (SFD) and 54% high fat obesogenic diet (HFD) for 13 weeks. No differences in body weight, adipose tissue weight, adipocyte size, plasma cholesterol or triglyceride levels could be observed between CD40flflLysMcre and wild type (WT) mice. CD40flflLysMcre displayed no changes in glucose tolerance or insulin resistance, but had higher plasma adiponectin levels when fed a SFD. Liver weights, liver cholesterol and triglyceride levels, as well as the degree of hepatosteatosis were not affected by absence of macrophage CD40. CD40flflLysMcre mice displayed a minor increase in adipose tissue leukocyte infiltration on SFD and HFD, which did not result in differences in adipose tissue cytokine levels. We here show that loss of macrophage CD40 signaling does not affect obesity induced metabolic dysregulation and indicates that CD40-deficiency on other cell-types than the macrophage is responsible for the metabolic dysregulation, adipose tissue inflammation and hepatosteatosis that are observed in CD40-/- mice

    Inhibition of NET Release Fails to Reduce Adipose Tissue Inflammation in Mice.

    Get PDF
    Obesity-associated diseases such as Type 2 diabetes, liver disease and cardiovascular diseases are profoundly mediated by low-grade chronic inflammation of the adipose tissue. Recently, the importance of neutrophils and neutrophil-derived myeloperoxidase and neutrophil elastase on the induction of insulin resistance has been established. Since neutrophil elastase and myeloperoxidase are critically involved in the release of neutrophil extracellular traps (NETs), we here hypothesized that NETs may be relevant to early adipose tissue inflammation. Thus, we tested the effect of the Peptidyl Arginine Deiminase 4 inhibitor Cl-amidine, a compound preventing histone citrullination and subsequent NET release, in a mouse model of adipose tissue inflammation. C57BL6 mice received a 60% high fat diet for 10 weeks and were treated with either Cl-amidine or vehicle. Flow cytometry of adipose tissue and liver, immunohistological analysis and glucose and insulin tolerance tests were performed to determine the effect of the treatment and diet. Although high fat diet feeding induced insulin resistance no significant effect was observed between the treatment groups. In addition no effect was found in leukocyte infiltration and activation in the adipose tissue and liver. Therefore we concluded that inhibition of neutrophil extracellular trap formation may have no clinical relevance for early obesity-mediated pathogenesis of the adipose tissue and liver

    Inhibition of NET Release Fails to Reduce Adipose Tissue Inflammation in Mice.

    Get PDF
    Obesity-associated diseases such as Type 2 diabetes, liver disease and cardiovascular diseases are profoundly mediated by low-grade chronic inflammation of the adipose tissue. Recently, the importance of neutrophils and neutrophil-derived myeloperoxidase and neutrophil elastase on the induction of insulin resistance has been established. Since neutrophil elastase and myeloperoxidase are critically involved in the release of neutrophil extracellular traps (NETs), we here hypothesized that NETs may be relevant to early adipose tissue inflammation. Thus, we tested the effect of the Peptidyl Arginine Deiminase 4 inhibitor Cl-amidine, a compound preventing histone citrullination and subsequent NET release, in a mouse model of adipose tissue inflammation. C57BL6 mice received a 60% high fat diet for 10 weeks and were treated with either Cl-amidine or vehicle. Flow cytometry of adipose tissue and liver, immunohistological analysis and glucose and insulin tolerance tests were performed to determine the effect of the treatment and diet. Although high fat diet feeding induced insulin resistance no significant effect was observed between the treatment groups. In addition no effect was found in leukocyte infiltration and activation in the adipose tissue and liver. Therefore we concluded that inhibition of neutrophil extracellular trap formation may have no clinical relevance for early obesity-mediated pathogenesis of the adipose tissue and liver

    Diet-induced obesity in mice diminishes hematopoietic stem and progenitor cells in the bone marrow

    No full text
    Obesity is associated with chronic low-grade inflammation, characterized by leukocytosis and inflammation in the adipose tissue. Continuous activation of the immune system is a stressor for hematopoietic stem and progenitor cells (HSPCs) in the bone marrow (BM). Here we studied how diet-induced obesity (DIO) affects HSPC population dynamics in the BM. Eight groups of age-matched C57Bl/6 mice received a high-fat diet (45% kilocalories from fat) ranging from 1 d up to 18 wk. The obesogenic diet caused decreased proliferation of lineage(-)Sca-1(+)c-Kit(+) (LSK) cells in the BM and a general suppression of progenitor cell populations including common lymphoid progenitors and common myeloid progenitors. Within the LSK population, DIO induced a shift in stem cells that are capable of self-renewal toward maturing multipotent progenitor cells. The higher differentiation potential resulted in increased lymphoid and myeloid ex vivo colony-forming capacity. In a competitive BM transplantation, BM from obese animals showed impaired multilineage reconstitution when transplanted into chow-fed mice. Our data demonstrate that obesity stimulates the differentiation and reduces proliferation of HSPCs in the BM, leading to a decreased HSPC population. This implies that the effects of obesity on HSPCs hampers proper functioning of the immune system.-Van den Berg, S. M., Seijkens, T. T. P., Kusters, P. J. H., Beckers, L., den Toom, M., Smeets, E., Levels, J., de Winther, M. P. J., Lutgens, E. Diet-induced obesity in mice diminishes hematopoietic stem and progenitor cells in the bone marro

    Peritoneal macrophages have an impaired immune response in obesity which can be reversed by subsequent weight loss

    Get PDF
    Introduction Obesity is recognized as a risk factor for various microbial infections. The immune system, which is affected by obesity, plays an important role in the pathophysiology of these infections and other obesity-related comorbidities. Weight loss is considered the most obvious treatment for obesity. However, multiple studies suggest that the comorbidities of obesity may persist after weight loss. Deregulation of immune cells including adipose tissue macrophages of obese individuals has been extensively studied, but how obesity and subsequent weight loss affect immune cell function outside adipose tissue is not well defined. Research design and methods Here we investigated the phenotype of non-adipose tissue macrophages by transcriptional characterization of thioglycollate-elicited peritoneal macrophages (PM) from mice with diet-induced obesity and type 2 diabetes (T2D). Subsequently, we defined the characteristics of PMs after weight loss and mimicked a bacterial infection by exposing PMs to lipopolysaccharide. Results and conclusions In contrast to the proinflammatory phenotype of adipose tissue macrophages in obesity and T2D, we found a deactivated state of PMs in obesity and T2D. Weight loss could reverse this deactivated macrophage phenotype. Anti-inflammatory characteristics of these non-adipose macrophages may explain why patients with obesity and T2D have an impaired immune response against pathogens. Our data also suggest that losing weight restores macrophage function and thus contributes to the reduction of immune-related comorbidities in patients
    corecore