1,264 research outputs found

    How might stress contribute to increased risk for schizophrenia in children with chromosome 22q11.2 deletion syndrome?

    Get PDF
    The most common human microdeletion occurs at chromosome 22q11.2. The associated syndrome (22q11.2DS) has a complex and variable phenotype with a high risk of schizophrenia. While the role of stress in the etiopathology of schizophrenia has been under investigation for over 30 years (Walker et al. 2008), the stress–diathesis model has yet to be investigated in children with 22q11.2DS. Children with 22q11.2DS face serious medical, behavioral, and socioemotional challenges from infancy into adulthood. Chronic stress elevates glucocorticoids, decreases immunocompetence, negatively impacts brain development and function, and is associated with psychiatric illness in adulthood. Drawing knowledge from the extant and well-developed anxiety and stress literature will provide invaluable insight into the complex etiopathology of schizophrenia in people with 22q11.2DS while suggesting possible early interventions. Childhood anxiety is treatable and stress coping skills can be developed thereby improving quality of life in the short-term and potentially mitigating the risk of developing psychosis

    Hippocampal volume reduction in children with chromosome 22q11.2 deletion syndrome is associated with cognitive impairment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous investigations of individuals with chromosome 22q11.2 deletion syndrome (DS22q11.2) have reported alterations in both brain anatomy and cognitive function. Neuroanatomical studies have reported multiple abnormalities including changes in both gray and white matter in the temporal lobe, including the amygdala and hippocampus. Separate investigations of cognitive abilities have established the prevalence of general intellectual impairment, although the actual extent to which a single individual is affected varies greatly within the population. The present study was designed to examine structures within the temporal lobe and assess their functional significance in terms of cognition in children with DS22q11.2.</p> <p>Method</p> <p>A total of 72 children (ages 7–14 years) participated in the investigation: 36 children (19 female, 17 male) tested FISH positive for chromosome 22q11.2 deletion (Mean age = 10 years 9 months, ± 2 yr 4 mo) and 36 were age-matched typically developing controls (13 female, 23 male; Mean age = 10 years 6 months, ± 1 yr 11 mo). For each subject, a three-dimensional high-resolution (1 mm isotropic) T1-weighted structural MRI was acquired. Neuroanatomical guidelines were used to define borders of the amygdala and hippocampus bilaterally and volumes were calculated based on manual tracings of the regions. The Wechsler Intelligence Scale for Children (WISC) was also administered.</p> <p>Results</p> <p>Volumetric reductions in total gray matter, white matter, and both the amygdala and hippocampus bilaterally were observed in children with DS22q11.2. Reductions in the left hippocampus were disproportionate to decreases in gray matter after statistically controlling for group differences in total gray matter, age, and data collection site. This specific reduction in hippocampal volume was significantly correlated with performance on standardized measures of intelligence, whereas the other neuroanatomical measures were not (gray/white matter, CSF, and amygdala).</p> <p>Conclusion</p> <p>Results from this study not only contribute to the understanding of the neuroanatomical variation in DS22q11.2, but also provide insight into the nature and source of the cognitive impairments associated with the syndrome. Specifically, we report that decreases in hippocampal volume may serve as an index of severity for cognitive impairments in children with DS22q11.2.</p

    Impaired object tracking in children with chromosome 22q11.2 deletion syndrome

    Get PDF
    Background: Chromosome 22q11.2 Deletion Syndrome (22q11.2DS) occurs in approximately 1:4,000 live births with a complex and variable presentation that includes medical, socioemotional and psychological symptoms with intellectual impairment. Cognitive impairments in spatiotemporal and visuospatial attention have also been reported. However, maintenance of selective attention to dynamic and interacting objects has not been systematically investigated in children with 22q11.2DS. Methods: We used a multiple object tracking task to assay capacity and resolution performance of children with 22q11.2DS aged 7 to 14 years versus age-matched typically developing (TD) peers. Results: Children with 22q11.2DS but not TD children demonstrated impaired performance when task demands increased due to an increase in the number of targets presented, but not from an increase in object speed. Task performance in children with 22q11.2DS was also unrelated to intelligence or measures of attention deficit hyperactivity disorder. Conclusions: These findings suggest that children with 22q11.2DS may be particularly susceptible to dynamic crowding of objects with increasing cognitive demands related to monitoring multiple targets reflecting a reduced acuity in spatiotemporal cognitive representation

    Impaired object tracking in children with chromosome 22q11.2 deletion syndrome

    Get PDF
    Background: Chromosome 22q11.2 Deletion Syndrome (22q11.2DS) occurs in approximately 1:4,000 live births with a complex and variable presentation that includes medical, socioemotional and psychological symptoms with intellectual impairment. Cognitive impairments in spatiotemporal and visuospatial attention have also been reported. However, maintenance of selective attention to dynamic and interacting objects has not been systematically investigated in children with 22q11.2DS. Methods: We used a multiple object tracking task to assay capacity and resolution performance of children with 22q11.2DS aged 7 to 14 years versus age-matched typically developing (TD) peers. Results: Children with 22q11.2DS but not TD children demonstrated impaired performance when task demands increased due to an increase in the number of targets presented, but not from an increase in object speed. Task performance in children with 22q11.2DS was also unrelated to intelligence or measures of attention deficit hyperactivity disorder. Conclusions: These findings suggest that children with 22q11.2DS may be particularly susceptible to dynamic crowding of objects with increasing cognitive demands related to monitoring multiple targets reflecting a reduced acuity in spatiotemporal cognitive representation

    Common and specific impairments in attention functioning in girls with chromosome 22q11.2 deletion, fragile X or Turner syndromes.

    Get PDF
    BACKGROUND: Chromosome 22q11.2 deletion syndrome (22q11.2DS), fragile X syndrome (FXS), and Turner syndrome (TS) are complex and variable developmental syndromes caused by different genetic abnormalities; yet, they share similar cognitive impairments in the domains of numbers, space, and time. The atypical development of foundational neural networks that underpin the attentional system is thought to result in further impairments in higher-order cognitive functions. The current study investigates whether children with similar higher-order cognitive impairments but different genetic disorders also show similar impairments in alerting, orienting, and executive control of attention. METHODS: Girls with 22q11.2DS, FXS, or TS and typically developing (TD) girls, aged 7 to 15 years, completed an attention network test, a flanker task with alerting and orienting cues. Exploration of reaction times and accuracy allowed us to test for potential commonalities in attentional functioning in alerting, orienting, and executive control. Linear regression models were used to test whether the predictors of group and chronological age were able to predict differences in attention indices. RESULTS: Girls with 22q11.2DS, FXS, or TS demonstrated unimpaired function of the alerting system and impaired function of the executive control system. Diagnosis-specific impairments were found such that girls with FXS made more errors and had a reduced orienting index, while girls with 22q11.2DS showed specific age-related deficits in the executive control system. CONCLUSIONS: These results suggest that the control but not the implementation of attention is selectively impaired in girls with 22q11.2DS, TS or FXS. Additionally, the age effect on executive control in girls with 22q11.2DS implies a possible altered developmental trajectory

    Adult Female Fragile X Premutation Carriers Exhibit Age- and CGG Repeat Length-Related Impairments on an Attentionally Based Enumeration Task

    Get PDF
    The high frequency of the fragile X premutation in the general population and its emerging neurocognitive implications highlight the need to investigate the effects of the premutation on lifespan cognitive development. Until recently, cognitive function in fragile X premutation carriers (fXPCs) was presumed to be unaffected by the mutation. Although as a group fXPCs did not differ from healthy controls (HCs), we show that young adult female fXPCs show subtle age- and significant fragile X mental retardation 1 (FMR1) gene mutation-modulated cognitive function as tested by a basic numerical enumeration task. These results indicate that older women with the premutation and fXPCs with greater CGG repeat lengths were at higher risk for difficulties in the deployment of volitional attention required to count 5–8 items, but spared performance when spatial shifts of attention were minimized to subitize a few (1–3). Results from the current study add to a growing body of evidence that suggests the premutation allele is associated with a subtle phenotype and implies that the cognitive demands necessary for counting are less effectively deployed in female fXPCs compared to HCs

    Engineering a catabolic pathway in plants for the degradation of 1,2-dichloroethane

    Get PDF
    Plants are increasingly being employed to clean up environmental pollutants such as heavy metals; however, a major limitation of phytoremediation is the inability of plants to mineralize most organic pollutants. A key component of organic pollutants is halogenated aliphatic compounds that include 1,2-dichloroethane (1,2-DCA). Although plants lack the enzymatic activity required to metabolize this compound, two bacterial enzymes, haloalkane dehalogenase (DhlA) and haloacid dehalogenase (DhlB) from the bacterium Xanthobacter autotrophicus GJ10, have the ability to dehalogenate a range of halogenated aliphatics, including 1,2-DCA. We have engineered the dhlA and dhlB genes into tobacco (Nicotiana tabacum ‘Xanthi’) plants and used 1,2-DCA as a model substrate to demonstrate the ability of the transgenic tobacco to remediate a range of halogenated, aliphatic hydrocarbons. DhlA converts 1,2-DCA to 2-chloroethanol, which is then metabolized to the phytotoxic 2-chloroacetaldehyde, then chloroacetic acid, by endogenous plant alcohol dehydrogenase and aldehyde dehydrogenase activities, respectively. Chloroacetic acid is dehalogenated by DhlB to produce the glyoxylate cycle intermediate glycolate. Plants expressing only DhlA produced phytotoxic levels of chlorinated intermediates and died, while plants expressing DhlA together with DhlB thrived at levels of 1,2-DCA that were toxic to DhlA-expressing plants. This represents a significant advance in the development of a low-cost phytoremediation approach toward the clean-up of halogenated organic pollutants from contaminated soil and groundwater

    Efficient Generation of Shape-Based Reference Frames for the Corpus Callosum for DTI-based Connectivity Analysis

    Get PDF
    Yushkevich et.al. [17, 18] established a PDE-based deformable modeling approach called continuous medial representation (cm-rep), in which the geometric relationship between the medial axis of a 3D object and its boundary is captured. Continuous medial description of an object not only provides useful shape features for object characterization and comparison; it also imposes a shape-based reference frame on the interior of that object. Such a reference frame provides a useful means of representing different instances of an anatomical structure using a common canonical parametrization domain. This paper presents an efficient method to construct continuous medial shape models for 2D objects. A closed form solution for the ordinary differential equation (ODE) is derived via Pythagorean hodograph (PH) curves. That closed form solution reduces the computation complexity from solving an ODE system to pure algebraic manipulation. Using this method, we generate shape-based reference frames, and demonstrate how they can be applied to the analysis of anatomical connectivity of corpora callosa, obtained by fiber tracking in diffusion tensor magnetic resonance imaging (DTI) in a chromosome 22q11.2 deletion syndrome study
    corecore