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Efficient Generation of Shape-Based Reference Frames for the Corpus
Callosum for DTI-based Connectivity Analysis

Abstract
Yushkevich et.al. [17, 18] established a PDE-based deformable modeling approach called continuous medial
representation (cm-rep), in which the geometric relationship between the medial axis of a 3D object and its
boundary is captured. Continuous medial description of an object not only provides useful shape features for
object characterization and comparison; it also imposes a shape-based reference frame on the interior of that
object. Such a reference frame provides a useful means of representing different instances of an anatomical
structure using a common canonical parametrization domain. This paper presents an efficient method to
construct continuous medial shape models for 2D objects. A closed form solution for the ordinary differential
equation (ODE) is derived via Pythagorean hodograph (PH) curves. That closed form solution reduces the
computation complexity from solving an ODE system to pure algebraic manipulation. Using this method, we
generate shape-based reference frames, and demonstrate how they can be applied to the analysis of anatomical
connectivity of corpora callosa, obtained by fiber tracking in diffusion tensor magnetic resonance imaging
(DTI) in a chromosome 22q11.2 deletion syndrome study.
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Abstract

Yushkevich et.al. [17, 18] established a PDE-based de-
formable modeling approach called continuous medial rep-
resentation (cm-rep), in which the geometric relationship
between the medial axis of a 3D object and its boundary is
captured. Continuous medial description of an object not
only provides useful shape features for object characteriza-
tion and comparison; it also imposes a shape-based refer-
ence frame on the interior of that object. Such a reference
frame provides a useful means of representing different in-
stances of an anatomical structure using a common canon-
ical parametrization domain. This paper presents an effi-
cient method to construct continuous medial shape models
for 2D objects. A closed form solution for the ordinary dif-
ferential equation (ODE) is derived via Pythagorean hodo-
graph (PH) curves. That closed form solution reduces the
computation complexity from solving an ODE system to
pure algebraic manipulation. Using this method, we gen-
erate shape-based reference frames, and demonstrate how
they can be applied to the analysis of anatomical connectiv-
ity of corpora callosa, obtained by fiber tracking in diffusion
tensor magnetic resonance imaging (DTI) in a chromosome
22q11.2 deletion syndrome study.

1. Introduction

With the rapid development of medical imaging field
and the wide application of functional magnetic resonance
imaging (fMRI) and diffusion tensor magnetic resonance
imaging (DTI), medical imaging processing models that can
combine shape features and appearance features together
are becoming more and more important. The hemodynamic
response information provided by fMRI and the diffusiv-

ity information from DTI are usually represented as appear-
ance features sampled on a lattice, but a meaningful descrip-
tion of their spatial distribution should take the shape of the
anatomical structure into account. Intuitively, “on the tip of
structure 1 for instances A, B and C” can be a much more
compact and meaningful way to give the spatial location
than “(1.05, 2.33, 5.1) for instance A, (1.02, 2.30, 5.01) for
instance B and (1.09, 2.23, 5.2) for instance C”. That is
because the first description is based on the shape analy-
sis result and removes the influence of the shape variation
within the population. In other words, we want to obtain a
shape-free version of the description. This idea is also well
addressed in popular active appearance model (AAM)[4],
in which the image is warped into a mean shape image to
obtain a shape-free patch of the appearance. The same prob-
lem is approached in a different way in continuous medial
representation (cm-rep) model, which determines a refer-
ence frame tailored to the individual shape of each instance
of some anatomical structure and uses that object intrinsic-
reference frame to parameterize the appearance features.
The advantage of cm-rep approach is that first, the refer-
ence frame is unique for an object in the sense that it won’t
depend on the mean shape which may vary according to the
data set; second, that reference frame has certain desirable
orthogonal properties and its coordinates have meaningful
interpretation; and third, that model also gives meaningful
shape information like bending and thickness, which can be
used for further function-shape co-analysis.

Medial axis is the basic concept in cm-rep. It describes
the shape of an object by its skeleton and corresponding
thickness field. It represents the shape compactly and pro-
vides meaningful shape information. Consequently, it has
applications in many fields, such as animation, shape recog-
nition, shape analysis, model based image segmentation and
registration. One of it’s most appealing advantage is its abil-

Proceedings of the 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW’06) 
0-7695-2646-2/06 $20.00 © 2006 IEEE 



Figure 1. the shape-based reference frame for cm-rep in 3D, coor-
dinates {u, v} follow the medial skeleton surface and ξ is orthog-
onal to the boundary

ity to impose an object intrinsic reference frame. However,
although this has been pointed out for a long time, surpris-
ingly, it didn’t turn into application until quite recently. One
reason lies in the fundamental sensitivity of medial descrip-
tion to object variation and small boundary perturbation.
Cm-reps, like their predecessor m-reps developed by Pizer
et al. [12], take a generative approach, where templates with
a predetermined medial branching topology are fitted to im-
age data. This approach enforces a consistent topology to
the medial axis, with the trade off of losing some accuracy
in the representation. As a continuous version of m-rep,
cm-rep provides a consistent parametric description of the
medial axis, which in turn imposes a consistent shape-based
reference frame on the interior of the object. In 3D, the first
two coordinates follow the medial skeleton surface, and the
other goes from the skeleton to the corresponding boundary
points, as illustrated in Figure 1; while in 2D, the first co-
ordinate follows the medial skeleton curve. Such reference
frame allows us to project the appearance features of differ-
ent objects into a common canonical coordinate space, in
which shape differences between individual objects can be
effectively removed.

The method to construct such reference frames in 3D re-
quires solving a PDE in each fitting iteration. In 3D, that
PDE is solved numerically. In 2D, same method involves
solving an ODE. In this paper, we present a closed form
solution to that ODE based on a class of curves known as
Pythagorean hodographs (PH) [6, 5], which allow the arc
length along the curves to be expressed as polynomial func-
tions. This closed form solution makes the construction of
cm-rep in 2D extremely efficient. Actually the system can
be constructed purely by manipulation of the coefficients of
polynomial curves.

Shape-based reference frame derived from cm-reps have
many potential applications in medical imaging, including
combined analysis of structure and function in fMRI and
combined analysis of shape and connectivity in DTI. As we
illustrated in this paper, the 2D cm-rep method provides a

new paradigm for analyzing axon fiber connectivity in the
corpus callosum. This paradigm combined fiber tracking,
track labeling and normalization to allow anatomical parti-
tioning of the corpus callosum on the basis of in vivo imag-
ing. We illustrate this idea in the context of an ongoing
chromosome 22q11.2 deletion syndrome study.

2. CM-Rep and Shape-Based Reference Frame

Here we briefly summarize the main framework of cm-
rep approach and discuss the shape-based reference frame
based on literature [17, 18], before we move on to investi-
gate the method of cm-rep approach in 2D.

2.1. Concepts in Medial Geometry

Medial axis has been studied rigorously in the recent lit-
erature [9, 13]. Here we just give the definitions and facts
in medial geometry that are necessary for understanding the
cm-rep framework.

1. A n-dimensional object is a bounded set in R
n that is

homeomorphic to n-dimensional unit ball and whose
boundary is singularity-free.

2. Let O be a n-dimensional object, a closed ball B is
called a maximal inscribed ball(MIB) of O if and only
if B ⊆ O and there does not exist another ball B′ such
that B ⊂ B′ ⊆ O.

3. Medial axis of an object O is the set of points in R
n ×

R
+ formed by the centers and radii of all the MIBs

of O. The term skeleton will be used to refer to only
the centers of all MIBs in this paper while radial field
will be used to refer to the radii of all MIBs.

There are usually 5 types of points in 3D and 3 types in 2D
that form the medial axis, according to the order and multi-
plicity of tangency between their MIBs and the boundary of
the object[8]. In current cm-rep model, a medial skeleton is
assumed to be a single manifold. Under that assumption, a
point on medial axis, i.e., the center of certain MIB, can be
one of the following two types: if the point (center of the
MIB) lies in the interior of the medial skeleton, that MIB
will be tangent to ∂O at two points; if the point (center of
the MIB) lies on the boundary of medial skeleton, that MIB
will be tangent to ∂O only at one point. However, since the
singly tangent MIBs can be treated as the limit set of the
bitangent MIBs, b+, b− can always be used to denote the
two points where the MIB B is tangent to ∂O. By medial
geometry, those boundary points can be obtained by

b± = m + R�U
±

�U
±

= −∇mR ± √
1 − ‖∇mR‖2 �Nm ,

(1)

where m is the point on medial skeleton (center of MIB),
R is the radius, �Nm is the unit normal vector of the medial
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skeleton at point m, �U
−

and �U
+

are unit length vectors or-
thogonal to ∂O at b− and b+, and ∇m is the Riemannian
gradient on the medial skeleton surface.

According to relation (1), the boundary of an object can
be derived from given medial axis, which can be called in-
verse skeletonization. However, to insure the inverse skele-
tonization is well-posed, i.e., to insure the given synthetic
medial axis can generate a valid object as defined, some
constraints must be satisfied. First, for every point on me-
dial axis, inequality constraints

R ≥ 0, ‖∇mR‖ ≤ 1 (2)

must hold. Then, for the points on the boundary of medial
skeleton, the generated boundary points b+ and b− must
meet there to form a closed object, thus equality constraint

R(1 − ‖∇mR‖2) = 0 (3)

must be satisfied, so that in (1), either R = 0 or �U
−

= �U
+

.
Furthermore, to prevent “local” self-intersections of the

boundary, a positive Jacobian constraint should be enforced
as

J�U
± > 0 (4)

2.2. PDE-Based CM-Rep Deformable Model

Cm-rep uses continuous functions to describe the medial
axis. Since the medial axis is codimension one to the ob-
ject it represents, it can be parameterized by (t1, t2) with
(t1, t2) ∈ Ω in 3D; and by t with t ∈ [a, b] in 2D.

In the cm-rep framework, a medial axis is constructed
by first defining its medial skeleton m : Ω → R

n and an
auxiliary scalar field ρ : Ω → R. Its radial field R is then
derived from solving a Poisson PDE.


mφ = ρ, subject to: ‖∇mφ‖2 = 4φ on ∂Ω (5)

where φ = R2, and 
m denotes the Laplace-Beltrami oper-
ator on manifold m. The equality constraint (3) is enforced
by the boundary conditions of PDE.

Thus, a cm-rep model is defined by the medial skeleton
and auxiliary scalar field, which in turn can be defined using
a set of basis functions whose coefficients can be adjusted
to modify the shape of the cm-rep model. The cm-rep for
a particular object is obtained by fitting the deformable cm-
rep template to the characteristic image in a Bayesian es-
timation framework. The non-equality constraints (2) and
(4) are implemented as prior terms. This procedure for 2D
objects will be elaborated in the application section.

2.3. Shape-Based Reference Frame

The cm-rep imposes a shape-based reference frame on
the cm-rep interior, i.e, the region enclosed by the cm-rep

generated boundary. Every point m|(t1,t2) on the medial
skeleton is the center of a MIB, that MIB determines two
vectors R�U

±|(t1,t2), which are refered to as spokes. They
start from the MIB center and end at the MIB tangency
points to the boundary (a pair of scaffold vectors coincide if
that MIB’s center is on the medial skeleton boundary ∂Ω).
All those vectors form a scaffold and span the whole cm-rep
interior. So, for every point enclosed by the cm-rep bound-
ary, its position will be determined if two things are known:
which vector pair it belongs to and where it is on that vec-
tor pair. Therefore, in 3D, a shape-based coordinate can be
defined as (t1, t2, ξ) with (t1, t2) ∈ Ω and ξ ∈ [−1, 1] such
that the Cartesian Coordinate of a point can be obtained by

X(t1, t2, ξ) = m(t1, t2) + |ξ|R(t1, t2)�U
sign(ξ)

(6)

There are some important properties of that coordinate
system.

1. The map of coordinates to points is onto.

2. The map of coordinates to points is one-to-one except
a codimension one set of points, that is, those points
with (t1, t2) ∈ ∂Ω, where the scaffold vector pair su-
perpose. So, for those points, (t1, t2, ξ) = (t1, t2,−ξ).

3. Since the scaffold vector is orthogonal to the bound-
ary, every point share the same (t1, t2) with its nearest
boundary point.

4. Points with (t1, t2) ∈ ∂Ω are those whose associated
nearest boundary points achieve maximal curvature on
boundary surface. In other words, the locus of points
with coordinates {t1, t2,±1} ( where (t1, t2) ∈ ∂Ω )
is the ridge of curvature on the boundary.

5. Points on medial skeleton have ξ = 0 while points on
cm-rep boundary have ξ = ±1. The coordinate |ξ|
gives the relative position with respect to the boundary
and medial skeleton, and the distance to the boundary
is given by (1 − |ξ|)R.

In 2D, just change the parametrization of the medial
skeleton surface (t1, t2) to parametrization of the medial
skeleton curve (t), all properties hold.

3. Closed Form Solution for ODE in 2D

In this section, we will describe how the closed form so-
lution in 2D is obtained and how it is used to construct an
efficient algorithm.

3.1. Solution Via Green’s Function

First, let’s look at the ODE in 2D. Let t ∈ [0, 1], the
Poisson PDE (5) simplifies to the following ODE:

d2φ
ds2 = ρ(t);
subject to: (dφ

ds )2 = 4φ at t = 0, 1,
(7)
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where s is the arc length of the medial curve α(t) =
{x(t), y(t)}, i.e, s(t) =

∫ t

0

√|α′(t)|dt. Note that the
boundary conditions are nonlinear, that means if we have
two functions f1 and f2 both satisfy the boundary condi-
tions, kf1 + f2 usually does not.

Denoting σ(t) ≡ ds
dt , the above ODE can be expanded

using the chain rule

(φ′(t)
σ(t) )′ = ρ(t)σ(t);

subject to: (φ′(t))2 = 4σ2(t)φ(t) at t = 0, 1,
(8)

which is a Sturm-Liouville equation with nonlinear bound-
ary conditions. The Green’s function G(t, u) for this equa-
tion is given by

(
G′(t, u)

σ(t)
)′ = δ(t − u), (9)

and the solution is obtained by

φ(t) =
∫ 1

0

G(t, u)ρ(u)σ(u) du, (10)

so long as the boundary conditions are satisfied.
Solving equation (9) by integration leads to the following

solution

G(t, u) = H(t−u)[s(t)−s(u)]+C1(u)s(t)+C2(u), (11)

where H denotes the Heaviside step function, C1(u) and
C2(u) are functions independent of t. Since the bound-
ary conditions of φ(t) are nonlinear, we can not assign a
boundary condition to every G(t, u) to determine C1(u) and
C2(u). Instead, we substitute the Green’s function solutions
(11) into equation (10) and use the boundary conditions
of (8), which gives us the following relations of functions
C1(u) and C2(u)

∫ 1

0
C1(u)ρ(u)σ(u) du = D1∫ 1

0
C2(u)ρ(u)σ(u) du = D2

(12)

where
D1 = 4LP−4Q−P 2

2(P−2L)

D2 = (4LP−4Q−P 2)2

16(P−2L)2

(13)

Here L = s(1) is the length of the medial curve, P =∫ 1

0
ρ(u)σ(u) du, and Q =

∫ 1

0
s(u)ρ(u)σ(u) du.

Using the relations (12), we can rewrite the solution of
ODE (10) as

φ(t) = s(t)
∫ t

0
ρ(u)σ(u) du−∫ t

0
s(u)ρ(u)σ(u) du + D1s(t) + D2

(14)

Since s(t) is actually an integral of σ(t), this solution
for φ(t) actually still involves double integral. That solu-
tion doesn’t have a closed form for arbitrary regular curves.
In order to further simplify it, we take the advantage of
Pythagorean hodograph (PH) curves [6, 5, 3].

3.2. Closed Form Solution via Pythagorean Hodo-
graph Curves

In this section, we will introduce PH curves to our solu-
tion to further simplify it and make it extremely efficient for
computation.

PH curves are polynomial parametric curves α̂(t) =
{x̂(t), ŷ(t)} for which there exists a polynomial σ̂(t) such
that

x̂′2(t) + ŷ′2(t) ≡ σ̂2(t) (15)

For PH curves, {x̂′, ŷ′, σ̂} form a Pythagorean triple, so that
not only x̂(t) and ŷ(t), but also the arc length ŝ(t) along the
curve, can be expressed as a polynomial function.

In [10], it is proved that PH curves must have the form

x̂′(t) = w(t)[p2(t) − q2(t)],
ŷ′(t) = 2w(t)p(t)q(t),
σ̂(t) = w(t)[p2(t) + q2(t)].

(16)

where w(t), p(t) and q(t) are polynomial functions.
If we use PH curve (or piecewise PH curve) to define

α(t), and also define ρ(t) as a (piecewise) polynomial func-
tion, then all functions in (14) are (piecewise) polynomial
functions or integrals of (piecewise) polynomial functions,
so that a closed form of φ can be obtained with ease. We can
also obtain x(t) and y(t) immediately if we are given the
boundary condition (x(0), y(0)). In practice, we only need
to manipulate the coefficients of those polynomial func-
tions, which is extremely fast.

However, if w(t) crosses zero, the given {x(t), y(t)} pair
would fail to generate a regular curve because ds

dt vanishes
there. To avoid that, we can simply set w(t) = 1. At the
same time, since we use piecewise curves, by subdividing
the whole curve into enough pieces, we still have enough
freedom to deform the curve to fit the anatomical structure.

Therefore, a cm-rep can be completely defined by the co-
efficients of p(t),q(t),ρ(t) and a translation term (x0, y0).In
current implementation, p(t),q(t) and ρ(t) are approxi-
mated by uniform quadratic B-spline functions. Therefore
the generated medial curves are piecewise 5th-order poly-
nomial curves, while φ(t) are piecewise 12th-order polyno-
mial functions, and overall both medial curves and φ(t) are
C2.

4. Application to DTI-based Corpus Callosum
Connectivity Map

In this section, we demonstrate the 2D cm-rep de-
formable modeling and shape-based reference frame by ap-
plying the method to normalize the DTI-based labeling of
the corpora callosa from an ongoing 22q11.2 syndrome
study [14]. The DTI-based labeling of corpus callosum is
created by labeling each pixel of a 2D midsagittal cross sec-
tion of the corpus callosum by estimating the most proba-
ble cortical to which the pixel is connected by axon fibers.
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Figure 2. The manually delineated atlas (left) and an example
of the atlas warped into the space of a subject’s T1-weighted im-
age (right). 2D slices of the cortical labels overlaid with the T1-
weighted images are shown at the top while 3D renderings of the
cortical labels are shown at the bottom. (Green for frontal lobes,
red for parietal lobes, blur for occipital lobes, yellow for temporal
lobes)

This labeling scheme leverages the anatomical connectivity
of corpus callosum axon fibers to the cortex derived from
DTI tractography, thus allows the corpus callosum to be
partitioned into subregions on the basis of in vivo imaging,
providing a potential alternative to the widely adopted Wi-
telson partition, which is based on empirical evidence from
post-mortem studies [15]. The normalization of corpus cal-
losum labeling from different subjects to a common canon-
ical parametrization domain allows us to analyze the con-
nectivity pattern of inter-hemispheric fibers through corpus
callosum without the influence of statistical confounds due
to shape variations.

In the following, we will first describe the generation of
DTI-based corpus callosum labeling, then detail the normal-
ization of the labeling results using the deformable cm-rep
modeling, finally show the analysis results of the partition-
ings in the common parametrization domain.

4.1. Generation of Connectivity-Based Labeling of
Corpus Callosum

Diffusion-weighted and T1-weighted MR scans of 3 typ-
ical developing children and 10 children with the 22q11.2
syndrome were acquired on a 3T Siemens scanner. For
each subject, the diffusion tensor image was reconstructed
from its diffusion-weighted scans [2]. The deterministic
streamline-based fiber tracking algorithm (FACT)[11] was
then applied to the diffusion tensor image to identify white
matter fibers inter-connecting the left and right hemispheres
of brain through the corpus callosum. We then labeled
the cortical regions of the diffusion tensor image by first
aligning a manually delineated anatomical atlas to the T1-
weighted image using a diffeomorphic image registration

a.

b.
Figure 3. The labeled white matter fibers of the corpus callosum
(Green for frontal lobes, red for parietal lobes, blur for occipital
lobes, yellow for temporal lobes). Panel a. shows an example of
a control child and panel b. shows an example of a child with
22q11.2 syndrome.

algorithm [1] and then placing the warped atlas (in the space
of the T1-weighted image) to the space of the diffusion ten-
sor image using the transformation that coregisters the T1-
weighted image to the diffusion tensor image. The labeling
of the anatomical atlas divides the cortex into four regions:
frontal, parietal, temporal and occipital, as shown in Figure
2. Each fiber derived from tractography was then assigned
the label of the cortical region closest to its endpoints, as
shown in Figure 3. Finally, we manually segmented the
midsagittal cross-section of the corpus callosum using ITK-
SNAP [16]. A labeling of the corpus callosum midsagittal
based on cortical connectivity was obtained by assigning
each pixel the label of the fibers passing through that pixel,
as shown in Figure 4. When a pixel had passing fibers with
different labels, it was given the label of the fibers with the
largest number. Further details can be found in [7].

4.2. Fitting CM-Rep to Corpus Callosum

In our current implementation, as we have discussed in
section 3, a cm-rep for a 2D object is defined by a sequence
of control coefficients

{cp
0, · · · , cp

N , cq
0, · · · , cq

N , cρ
0, · · · , cρ

N , x0, y0} (17)
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a.

b.
Figure 4. DTI-based color labeled connectivity maps in corpus cal-
losum(Green for frontal lobes, red for parietal lobes, blur for oc-
cipital lobes, yellow for temporal lobes).

so that
p(t) =

∑N
i=0 cp

i Bi,2(t),
q(t) =

∑N
i=0 cq

i Bi,2(t),
ρ(t) =

∑N
i=0 cρ

i Bi,2(t).
(18)

where Bi,2(t) is the uniform quadratic B-spline basis func-
tion.

For each corpus callosum instance, we determine the se-
quence of control coefficients that maximize the posterior
probability given the characteristic image of the instance.
The posterior probability is factored into a likelihood term
and a prior term. The likelihood term measures the match
between the cm-rep model and the image. And the prior
term can be used to enforce the inequality constraints. In
the future, we also intend to build the cm-rep probabilistic
atlas and include that in the prior term.

Currently we use 16 × 3 + 2 coefficients in the tem-
plate. We initialize the fitting by aligning the cm-rep tem-
plate to the object by a similarity transform. That could
be done by a rotation and scaling of vectors (cp

0, · · · , cp
N )

and (cq
0, · · · , cq

N ) and a translation via changing (x0, y0).
ρ(t) have the good property of invariance under such trans-
forms. Then, Conjugate Gradient Optimization is used to
find the optimal set of coefficients. The gradient of the area
overlap match can be computed very efficiently by Green’s
theorem, which converts the double integral over the whole
cm-rep interior to a line integral along the cm-rep boundary.

Examples of fitting results are shown in Figure 5. We
computed the distance between the fitted cm-rep to the ob-
ject. The mean distance from cm-rep to object for all 13 in-
stances is 0.55(±0.04) pixels, the maximum distance from
cm-rep to object is 1.25(±0.14) pixels, the mean distance

a.

b.
Figure 5. Examples of fitted cm-reps to corpora callosa, the black
lines indicate the boundary contour of characteristic image, the
red lines are boundary curves of fitted cm-reps, the blue lines are
medial skeleton curves.

from object to cm-rep is 0.57(±0.05) pixels, and the max-
imum distance from object to cm-rep is 1.52(±0.36) pix-
els. The representation error of cm-rep is in sub pixel or-
der. The mean Dice similarity coefficient ( 2(A∩B)

A+B ), which
measures overlap between the binary image and fitted cm-
rep for 13 corpora callosa is 91.59(±1.21)%, the mean Dice
coefficient between the boundary contour image and fitted
cm-rep, however, is 93.61(±0.92)%. The overlap ratio is
underestimated by those big pixels along the boundary. We
expect a higher overlap ratio for image with better resolu-
tion.

4.3. Connectivity Map Analysis in Shape-Based
Reference Frame

The natural consistent parametrization for curves is by
its arc length, which we can use to establish the corre-
spondence for medial skeleton curves. It would take extra
effort for establishing correspondence for medial skeleton
surfaces among 3D objects since such “natural consistent”
parametrization doesn’t exist for surface.

For the fitted cm-rep, let the normalized arc length s(t)
L

serve as the new parametrization of the medial skeleton
curve and use it as the first coordinate, meantime use ξ as
the second coordinate. We then obtained the shape-based
reference frame for each instance of corpora callosa. Figure
6 shows the grid lines of the shape-based reference frame
imposed by the fitted cm-reps, overlaid on the corpora cal-
losa connectivity maps.

That shape-based reference frame allows us to project
connectivity labels into a common canonical coordinate
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a.

b.
Figure 6. The grid lines of the shape-based reference frame im-
posed by fitted cm-reps, overlaid on the connectivity maps of cor-
pora callosa. (Green for frontal lobes, red for parietal lobes, blur
for occipital lobes, yellow for temporal lobes)

a.

b.
Figure 7. The connectivity maps of corpora callosa in new shape-
based reference frame. (Green for frontal lobes, red for parietal
lobes, blur for occipital lobes, yellow for temporal lobes)

space, as illustrated in figure 7. In such space, the shape
differences between corpora callosa have been effectively
removed, which allows us to compare the connectivity map
across subjects with ease. As we mentioned before, the map
has certain desirable properties: the normal directions to the
boundaries are preserved; the boundaries of objects are still
mapped to the boundaries in new reference frame; and the
medial skeleton curves are mapped to the centerlines. The
coordinates in this reference frame have meaningful inter-
pretation too, which is potentially helpful for research.

In this case, since more information lies along the me-
dial skeleton curves, further dimensionality reduction can
be achieved by plotting the connectivity density for each

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

control.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

patient.
Figure 8. The mean connectivity density along medial skeleton
for different populations. (Green for frontal lobes, red for parietal
lobes, blur for occipital lobes, yellow for temporal lobes)

cortical region against the first coordinate of the canoni-
cal space, collapsing values along the second coordinate.
Figure 8 shows mean profiles for patients and controls ob-
tained by averaging such 1D profiles across subjects. It ap-
pears that the density of fibers connecting to temporal lobes
is greater in patients, however, the relatively small size of
the data set precludes us from making statistically signifi-
cant statements. We expect to be able to detect differences
between groups as the number of subjects in our ongoing
study increases.

Here we established the correspondence for medial
skeleton curves by parameterizing them using normalized
arc length, which can be used to compare the connectiv-
ity along the medial skeleton curves among subjects. On
the other hand, we can choose to establish correspondence
by a simple 1D registration based on the connectivity map,
which can be used to compare the length of medial skele-
ton curves connected to different cortical regions across.
The ability to label the corpus callosum according to cor-
tical connectivity in vivo, combined with the ability to ana-
lyze resulting maps of labels statistically, may potentially be
used to generate a partitioning of the corpus callosum that
would be an alternative to the more empirical Witelson par-
tition [15], which was based on post-mortem experiments.
We will explore this direction in future research.

5. Conclusion

We have developed an efficient method to construct a
cm-rep model for 2D objects. This cm-rep model imposes a
shape-based reference frame, which can represent different
instances of an anatomical structure using a common para-
metrization domain, in which the shape differences between
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objects are effectively removed. This shape-based reference
frame can be useful in the DTI and fMRI study, as we illus-
trated by a case study on DTI based connectivity analysis in
corpus callosum.
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