507 research outputs found

    Seeing many-body effects in single- and few-layer graphene: Observation of two-dimensional saddle-point excitons

    Full text link
    Significant excitonic effects were observed in graphene by measuring its optical conductivity in a broad spectral range including the two-dimensional {\pi}-band saddle-point singularities in the electronic structure. The strong electron-hole interactions manifest themselves in an asymmetric resonance peaked at 4.62 eV, which is red-shifted by nearly 600 meV from the value predicted by ab-initio GW calculations for the band-to-band transitions. The observed excitonic resonance is explained within a phenomenological model as a Fano interference of a strongly coupled excitonic state and a band continuum. Our experiment also showed a weak dependence of the excitonic resonance in few-layer graphene on layer thickness. This result reflects the effective cancellation of the increasingly screened repulsive electron-electron (e-e) and attractive electron-hole (e-h) interactions.Comment: 9 pages, 3 figures, In PR

    Control of RelB during dendritic cell activation integrates canonical and noncanonical NF-κB pathways.

    Get PDF
    The NF-κB protein RelB controls dendritic cell (DC) maturation and may be targeted therapeutically to manipulate T cell responses in disease. Here we report that RelB promoted DC activation not as the expected RelB-p52 effector of the noncanonical NF-κB pathway, but as a RelB-p50 dimer regulated by canonical IκBs, IκBα and IκBɛ. IκB control of RelB minimized spontaneous maturation but enabled rapid pathogen-responsive maturation. Computational modeling of the NF-κB signaling module identified control points of this unexpected cell type-specific regulation. Fibroblasts that we engineered accordingly showed DC-like RelB control. Canonical pathway control of RelB regulated pathogen-responsive gene expression programs. This work illustrates the potential utility of systems analyses in guiding the development of combination therapeutics for modulating DC-dependent T cell responses

    High-resolution spatial mapping of the temperature distribution of a Joule self-heated graphene nanoribbon

    Full text link
    We investigate the temperature distributions of Joule self-heated graphene nanoribbons (GNRs) with a spatial resolution finer than 100 nm by scanning thermal microscopy (SThM). The SThM probe is calibrated using the Raman G mode Stokes/anti-Stokes intensity ratio as a function of electric power applied to the GNR devices. From a spatial map of the temperature distribution, heat dissipation and transport pathways are investigated. By combining SThM and scanning gate microscopy data from a defected GNR, we observe hot spot formation at well-defined, localized sites.Comment: 4 pages, 3 figures, accepted on App. Phys. Let

    Activation and Monitoring of mtDNA Damage in Cancer Cells via the "proton-Triggered" Decomposition of an Ultrathin Nanosheet

    Get PDF
    Mitochondrial DNA (mtDNA) damage is a very important molecular event, which has significant effects on living organisms. Therefore, a particularly important challenge for biomaterials research is to develop functionalized nanoparticles that can activate and monitor mtDNA damage and instigate cancer cell apoptosis, and as such eliminate the negative effects on living organisms. Toward that goal, with this research, we have developed a hydroxyapatite ultrathin nanosheet (HAP-PDCns) - a high Ca2+ content biomaterial. HAP-PDCns undergoes proton-triggered decomposition after entering cancer cells via clathrin-mediated endocytosis, and then, it selectively concentrates in the charged mitochondrial membrane. This kind of proton-triggered decomposition phenomenon facilitates mtDNA damage by causing instantaneous local calcium overload in the mitochondria of cancer cells, and inhibits tumor growth. Importantly, at the same time, a real-time green-red-green fluorescence change occurs that correlates with the degree of mtDNA deterioration because of the changes in the highest occupied molecular orbital-lowest unoccupied molecular orbital energy gaps during this process. Significantly, the decomposition and the fluorescence changes cannot be triggered in normal cells. Thus, HAP-PDCns can selectively induce apoptosis and the death of a cancer cell by facilitating mtDNA damage, but does not affect normal cells. In addition, HAP-PDCns can simultaneously monitor the degree of mtDNA damage. We anticipate that this design strategy can be generalized to develop other functionalized biomaterials that can be used to instigate the positive effects of mtDNA damage on living organisms while eliminating any negative effects. </p

    Water-Gated Charge Doping of Graphene Induced by Mica Substrates

    Full text link
    We report on the existence of water-gated charge doping of graphene deposited on atomically flat mica substrates. Molecular films of water in units of ~0.4 nm-thick bilayers were found to be present in regions of the interface of graphene/mica hetero-stacks prepared by micromechanical exfoliation of kish graphite. The spectral variation of the G and 2D bands, as visualized by Raman mapping, shows that mica substrates induce strong p-type doping in graphene, with hole densities of (9±2)×1012cm(9 \pm 2) \times 1012 cm{-2}$. The ultrathin water films, however, effectively block interfacial charge transfer, rendering graphene significantly less hole-doped. Scanning Kelvin probe microscopy independently confirmed a water-gated modulation of the Fermi level by 0.35 eV, in agreement with the optically determined hole density. The manipulation of the electronic properties of graphene demonstrated in this study should serve as a useful tool in realizing future graphene applications.Comment: 15 pages, 4 figures; Nano Letters, accepted (2012

    Status of Muon Collider Research and Development and Future Plans

    Get PDF
    The status of the research on muon colliders is discussed and plans are outlined for future theoretical and experimental studies. Besides continued work on the parameters of a 3-4 and 0.5 TeV center-of-mass (CoM) energy collider, many studies are now concentrating on a machine near 0.1 TeV (CoM) that could be a factory for the s-channel production of Higgs particles. We discuss the research on the various components in such muon colliders, starting from the proton accelerator needed to generate pions from a heavy-Z target and proceeding through the phase rotation and decay (πμνμ\pi \to \mu \nu_{\mu}) channel, muon cooling, acceleration, storage in a collider ring and the collider detector. We also present theoretical and experimental R & D plans for the next several years that should lead to a better understanding of the design and feasibility issues for all of the components. This report is an update of the progress on the R & D since the Feasibility Study of Muon Colliders presented at the Snowmass'96 Workshop [R. B. Palmer, A. Sessler and A. Tollestrup, Proceedings of the 1996 DPF/DPB Summer Study on High-Energy Physics (Stanford Linear Accelerator Center, Menlo Park, CA, 1997)].Comment: 95 pages, 75 figures. Submitted to Physical Review Special Topics, Accelerators and Beam

    Description of the data from the Collaborative Study on the Genetics of Alcoholism (COGA) and single-nucleotide polymorphism genotyping for Genetic Analysis Workshop 14

    Get PDF
    The data provided to the Genetic Analysis Workshop 14 (GAW 14) was the result of a collaboration among several different groups, catalyzed by Elizabeth Pugh from The Center for Inherited Disease Research (CIDR) and the organizers of GAW 14, Jean MacCluer and Laura Almasy. The DNA, phenotypic characterization, and microsatellite genomic survey were provided by the Collaborative Study on the Genetics of Alcoholism (COGA), a nine-site national collaboration funded by the National Institute of Alcohol and Alcoholism (NIAAA) and the National Institute of Drug Abuse (NIDA) with the overarching goal of identifying and characterizing genes that affect the susceptibility to develop alcohol dependence and related phenotypes. CIDR, Affymetrix, and Illumina provided single-nucleotide polymorphism genotyping of a large subset of the COGA subjects. This article briefly describes the dataset that was provided

    US Cosmic Visions: New Ideas in Dark Matter 2017: Community Report

    Get PDF
    This white paper summarizes the workshop "U.S. Cosmic Visions: New Ideas in Dark Matter" held at University of Maryland on March 23-25, 2017.Comment: 102 pages + reference
    corecore