14 research outputs found

    Alternative Software for Evaluating Preliminary Rock Stability of Tunnel Using Rock Mass Rating (RMR) and Rock Mass Quality (Q) on Android Smartphone

    Get PDF
    Nowadays, tunneling is applied to a variety of constructions such as subway station, water supply tunnel and underground mine. Tunnel safety is one of the most important factors of construction. Most tunneling is operated in remote area that is difficult to reach. This research aims to develop an alternative software for Android smartphone, which use for estimating preliminary rock mass stability and suggesting support method for the early state tunnel. Suitable rock mass classifications for tunnel are rock mass rating (RMR) and rock mass quality (Q system). They are applied to the application. Android operating system is chosen because it is the most popular operating system in the world. The application is programmed by the official programming software from Google, the Android Studio. PSU-RQ is the name of this application. PSU-RQ is easy to use because it reduced the complexity of the theories by numerical logic. The application results are verified by comparing with Excel standard worksheet. PSU-RQ is reliable and accurate. The application is tested in a tunneling case study as an example. Whenever a smartphone is available, the user can estimate preliminary rock mass stability and support method of tunnel instantly. However, long-term stability investigation is necessary

    āļāļēāļĢāļžāļąāļ’āļ™āļēāļāļģāļĨāļąāļ‡āđāļĨāļ°āļ„āļ§āļēāļĄāļ„āļ‡āļ—āļ™āļ•āđˆāļ­āļ‹āļąāļĨāđ€āļŸāļ•āļ‚āļ­āļ‡āļ„āļ­āļ™āļāļĢāļĩāļ•āđƒāļŠāđˆāļĄāļ§āļĨāļĢāļ§āļĄ āđ€āļĻāļĐāļ‚āļ§āļ”āđāļāđ‰āļ§āđƒāļŠāļœāļŠāļĄāđ€āļ–āđ‰āļēāļŠāļēāļ™āļ­āđ‰āļ­āļĒ Strength Development and Sulfate Durability of Waste Clear Bottle Glass Aggregate Concrete Containing Sugarcane Bagasse Ash

    No full text
    āļšāļ—āļ„āļąāļ”āļĒāđˆāļ­āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āļĻāļķāļāļĐāļēāļžāļąāļ’āļ™āļēāļāļēāļĢāļ‚āļ­āļ‡āļāļģāļĨāļąāļ‡āļ­āļąāļ”āđāļĨāļ°āļ„āļ§āļēāļĄāļ„āļ‡āļ—āļ™āļ‚āļ­āļ‡āļ„āļ­āļ™āļāļĢāļĩāļ•āļ—āļĩāđˆāđƒāļŠāđ‰āđ€āļĻāļĐāļ‚āļ§āļ”āđāļāđ‰āļ§āđ€āļ›āđ‡āļ™āļĄāļ§āļĨāļĢāļ§āļĄāļŦāļĒāļēāļšāļœāļŠāļĄāđ€āļ–āđ‰āļēāļŠāļēāļ™āļ­āđ‰āļ­āļĒāļ—āļĩāđˆāļĄāļĩāļ™āđ‰āļģāļŦāļ™āļąāļāļŠāļđāļāļŦāļēāļĒāļŦāļĨāļąāļ‡āđ€āļœāļēāļŠāļđāļ‡āļ•āđˆāļ­āļŠāļēāļĢāļĨāļ°āļĨāļēāļĒāđāļĄāļāļ™āļĩāđ€āļ‹āļĩāļĒāļĄāļ‹āļąāļĨāđ€āļŸāļ• āđ€āļ–āđ‰āļēāļŠāļēāļ™āļ­āđ‰āļ­āļĒāđāļ—āļ™āļ—āļĩāđˆāļšāļēāļ‡āļŠāđˆāļ§āļ™āļ‚āļ­āļ‡āļ›āļđāļ™āļ‹āļĩāđ€āļĄāļ™āļ•āđŒāļ›āļ­āļĢāđŒāļ•āđāļĨāļ™āļ”āđŒ āđƒāļ™āļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™āļœāļŠāļĄāđāļ›āļĢāļœāļąāļ™ 15, 20 āđāļĨāļ° 25% āđ‚āļ”āļĒāļ™āđ‰āļģāļŦāļ™āļąāļ āđƒāļŠāđ‰āļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™āļ™āđ‰āļģāļ•āđˆāļ­āļ§āļąāļŠāļ”āļļāļ›āļĢāļ°āļŠāļēāļ™ 0.4 āļ„āļ‡āļ—āļĩāđˆāļ•āļĨāļ­āļ” āđ€āļ•āļĢāļĩāļĒāļĄāļ•āļąāļ§āļ­āļĒāđˆāļēāļ‡āļ„āļ­āļ™āļāļĢāļĩāļ•āļ—āļĢāļ‡āļĨāļđāļāļšāļēāļĻāļāđŒāļ‚āļ™āļēāļ” 100×100×100 āļĄāļīāļĨāļĨāļīāđ€āļĄāļ•āļĢ āļ āļēāļĒāđƒāļ•āđ‰āļšāļĢāļĢāļĒāļēāļāļēāļĻ 26 āļ­āļ‡āļĻāļēāđ€āļ‹āļĨāđ€āļ‹āļĩāļĒāļŠ āļ„āļ§āļēāļĄāļŠāļ·āđ‰āļ™āļŠāļąāļĄāļžāļąāļ—āļ˜āđŒ 80% āļšāđˆāļĄāđāļšāļšāļ„āļ§āļēāļĄāļŠāļ·āđ‰āļ™āđ€āļ›āđ‡āļ™āđ€āļ§āļĨāļē 7 āđāļĨāļ° 28 āļ§āļąāļ™ āļ—āļ”āļŠāļ­āļšāļŠāļĄāļšāļąāļ•āļīāļ‚āļ­āļ‡āļ„āļ­āļ™āļāļĢāļĩāļ• āđ„āļ”āđ‰āđāļāđˆ āļāļēāļĢāļ”āļđāļ”āļ‹āļķāļĄāļ™āđ‰āļģ āļ„āļ§āļēāļĄāļŦāļ™āļēāđāļ™āđˆāļ™āļĢāļ§āļĄ āļ„āļ§āļēāļĄāđāļ‚āđ‡āļ‡āđāļšāļšāļŠāļ­āļĢāđŒ āļ„āļ§āļēāļĄāļ•āđ‰āļēāļ™āļ—āļēāļ™āđ„āļŸāļŸāđ‰āļēāļˆāļģāđ€āļžāļēāļ° āļāļģāļĨāļąāļ‡āļ­āļąāļ” āđāļĨāļ°āļāļēāļĢāļŦāļ”āļ•āļąāļ§āđāļšāļšāđāļŦāđ‰āļ‡āđ€āļŠāļīāļ‡āļ›āļĢāļīāļĄāļēāļ•āļĢ āļ—āļ”āļŠāļ­āļšāļ„āļ§āļēāļĄāļ„āļ‡āļ—āļ™āļ•āđˆāļ­āļŠāļēāļĢāļĨāļ°āļĨāļēāļĒāđāļĄāļāļ™āļĩāđ€āļ‹āļĩāļĒāļĄāļ‹āļąāļĨāđ€āļŸāļ•āļ‚āļ­āļ‡āļ•āļąāļ§āļ­āļĒāđˆāļēāļ‡āđ„āļĄāđˆāļšāđˆāļĄāđƒāļ™āļŠāļēāļĢāļĨāļ°āļĨāļēāļĒāđāļĄāļāļ™āļĩāđ€āļ‹āļĩāļĒāļĄāļ‹āļąāļĨāđ€āļŸāļ•āļ—āļĩāđˆāļ­āļīāđˆāļĄāļ•āļąāļ§āđ€āļ›āđ‡āļ™āđ€āļ§āļĨāļē 8 āļŠāļąāļ›āļ”āļēāļŦāđŒ āļ•āļĢāļ§āļˆāđāļĢāđˆāļ›āļĢāļ°āļāļ­āļšāđƒāļ™āļ„āļ­āļ™āļāļĢāļĩāļ•āļ—āļĩāđˆāđ€āļ”āđˆāļ™āļ—āļĩāđˆāļŠāļļāļ”āļ”āđ‰āļ§āļĒāļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļāļēāļĢāđ€āļĨāļĩāđ‰āļĒāļ§āđ€āļšāļ™āļĢāļąāļ‡āļŠāļĩāđ€āļ­āļāļ‹āđŒ āđāļĨāļ°āđ‚āļ„āļĢāļ‡āļŠāļĢāđ‰āļēāļ‡āļˆāļļāļĨāļ āļēāļ„āļ”āđ‰āļ§āļĒāļāļĨāđ‰āļ­āļ‡āļˆāļļāļĨāļ—āļĢāļĢāļĻāļ™āđŒāļ­āļīāđ€āļĨāđ‡āļāļ•āļĢāļ­āļ™āđāļšāļšāļŠāđˆāļ­āļ‡āļāļĢāļēāļ” āļžāļšāļ§āđˆāļēāļāļģāļĨāļąāļ‡āļ­āļąāļ”āļ‚āļ­āļ‡āļ„āļ­āļ™āļāļĢāļĩāļ•āļ—āļĩāđˆāļœāļŠāļĄāđ€āļ–āđ‰āļēāļŠāļēāļ™āļ­āđ‰āļ­āļĒāđāļ—āļ™āļ—āļĩāđˆ 15% āļšāđˆāļĄāļ—āļĩāđˆ 28 āļ§āļąāļ™ āļĄāļĩāļāļģāļĨāļąāļ‡āļ­āļąāļ”āļŠāļđāļ‡āļŠāļļāļ” 43 āđ€āļĄāļāļ°āļžāļēāļŠāļ„āļąāļĨ āđāļĨāļ°āļŠāļēāļĄāļēāļĢāļ–āļĒāļąāļšāļĒāļąāđ‰āļ‡āļāļēāļĢāļāļąāļ”āļāļĢāđˆāļ­āļ™āļ‚āļ­āļ‡āđāļĄāļāļ™āļĩāđ€āļ‹āļĩāļĒāļĄāļ‹āļąāļĨāđ€āļŸāļ• āļĒāļąāļ‡āđāļŠāļ”āļ‡āļ§āđˆāļēāļĄāļ§āļĨāļĢāļ§āļĄāļŦāļĒāļēāļšāđ€āļĻāļĐāļ‚āļ§āļ”āđāļāđ‰āļ§āđƒāļŠāđ„āļĄāđˆāđāļŠāļ”āļ‡āļœāļĨāļāļĢāļ°āļ—āļšāļ­āļĒāđˆāļēāļ‡āļŠāļīāđ‰āļ™āđ€āļŠāļīāļ‡āļ•āđˆāļ­āļŠāļĄāļšāļąāļ•āļīāļ—āļēāļ‡āļāļēāļĒāļ āļēāļžāđāļĨāļ°āđ€āļŠāļīāļ‡āļāļĨāļ‚āļ­āļ‡āļ„āļ­āļ™āļāļĢāļĩāļ•AbstractThis research investigated compressive strength development and magnesium sulfate durability of concrete using waste clear glass clue (WCGC) as coarse aggregate blending sugarcane bagasse ash (SBA) with high value of loss on ignition. SBA was replaced partially of Portland cement, Type I in proportion of 15, 20 and 25wt.%. Water to binder ratio of 0.4 was constant throughout the study and cubic specimens were prepared in size of 100×100×100 mm3 under atmosphere of 26°C with 80% relative humidity. The specimens were uncured and cured in water for 7 and 28 days. Physico-mechanical properties of concrete were determined on water absorption, bulk density, Shore hardness, electrical resistivity, compressive strength and volumetric drying shrinkage. Magnesium sulfate durability of uncured specimens was performed in saturated magnesium sulfate solution for 8 weeks. X-ray diffraction and microstructure with Scanning Electron Microscope were analysed on the selected high strength specimen. The 28-day compressive strength of 15%SBA displayed the highest value of 43 MPa and can be suppressed magnesium sulfate attack in deleterious concrete. It was also revealed that coarse aggregate contained WCGC presented a negligible effect on the physical-mechanical properties of concrete

    Performance of Lightweight Aggregate Mortar Containing Pumice Blended with Palm Oil Fuel Ash Clinker and Metakaolin for Elevated Temperatures and Chloride Permeability Resistance

    Get PDF
    āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āđ€āļāļĩāđˆāļĒāļ§āļāļąāļšāļāļēāļĢāļĻāļķāļāļĐāļēāļŠāļĄāļĢāļĢāļ–āļ™āļ°āļ‚āļ­āļ‡āļĄāļ­āļĢāđŒāļ•āļēāļĢāđŒāļĄāļ§āļĨāļĢāļ§āļĄāļ™āđ‰āļģāļŦāļ™āļąāļāđ€āļšāļēāđƒāļŠāđˆāļžāļđāļĄāļīāļ‹āļœāļŠāļĄāļœāļŠāļĄāļ•āļ°āļāļĢāļąāļ™āđ€āļ–āđ‰āļēāđ€āļŠāļ·āđ‰āļ­āđ€āļžāļĨāļīāļ‡āļ›āļēāļĨāđŒāļĄāļ™āđ‰āļģāļĄāļąāļ™āđāļĨāļ°āļ”āļīāļ™āļ‚āļēāļ§āđāļ›āļĢāļ•āđˆāļ­āļāļēāļĢāļ—āļ™āđ„āļŸāđāļĨāļ°āļ•āđ‰āļēāļ™āļāļēāļĢāļ‹āļķāļĄāļœāđˆāļēāļ™āļ‚āļ­āļ‡āļ„āļĨāļ­āđ„āļĢāļ”āđŒ āđ‚āļ”āļĒāđƒāļŠāđ‰āļ•āļ°āļāļĢāļąāļ™āđ€āļ–āđ‰āļēāđ€āļŠāļ·āđ‰āļ­āđ€āļžāļĨāļīāļ‡āļ›āļēāļĨāđŒāļĄāļ™āđ‰āļģāļĄāļąāļ™āđāļĨāļ°āļ”āļīāļ™āļ‚āļēāļ§āđāļ›āļĢāđāļ—āļ™āļ—āļĩāđˆāļ›āļĢāļīāļĄāļēāļ“āļ›āļđāļ™āļ‹āļĩāđ€āļĄāļ™āļ•āđŒāļ›āļ­āļĢāđŒāļ•āđāļĨāļ™āļ”āđŒāļ˜āļĢāļĢāļĄāļ”āļē āļŠāļ™āļīāļ”āļ—āļĩāđˆ 1 āđƒāļ™āļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™āļĢāđ‰āļ­āļĒāļĨāļ° 0, 10, 20 āđāļĨāļ° 30 āđ‚āļ”āļĒāļĄāļ§āļĨ āļ—āļĩāđˆāļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™āļ™āđ‰āļģāļ•āđˆāļ­āļ§āļąāļŠāļ”āļļāļ›āļĢāļ°āļŠāļēāļ™ 0.35 āļšāđˆāļĄāļ•āļąāļ§āļ­āļĒāđˆāļēāļ‡āļĄāļ­āļĢāđŒāļ•āļēāļĢāđŒāļ—āļĩāđˆāļšāļĢāļĢāļĒāļēāļāļēāļĻāļŦāđ‰āļ­āļ‡ āđ€āļ›āđ‡āļ™āļĢāļ°āļĒāļ° 3, 7, 28, 56 āđāļĨāļ° 90 āļ§āļąāļ™ āļ—āļ”āļŠāļ­āļšāļāļģāļĨāļąāļ‡āļ­āļąāļ”āđāļĨāļ°āļāļēāļĢāļŠāļđāļāđ€āļŠāļĩāļĒāļ™āđ‰āļģāļ—āļĩāđˆāļ­āļļāļ“āļŦāļ āļđāļĄāļīāļŦāđ‰āļ­āļ‡āđāļĨāļ°āļ­āļļāļ“āļŦāļ āļđāļĄāļīāļ—āļĩāđˆāļŠāļđāļ‡āļ‚āļķāđ‰āļ™ (200 āđāļĨāļ° 400 āļ­āļ‡āļĻāļēāđ€āļ‹āļĨāđ€āļ‹āļĩāļĒāļŠ) āļ”āđ‰āļ§āļĒāļĄāļ­āļĢāđŒāļ•āļēāļĢāđŒāļ—āļĢāļ‡āļĨāļđāļāļšāļēāļĻāļāđŒāļ‚āļ™āļēāļ” 50 × 50 × 50 āļĄāļīāļĨāļĨāļīāđ€āļĄāļ•āļĢ āļŦāļĨāđˆāļ­āļĄāļ­āļĢāđŒāļ•āļēāļĢāđŒāļ—āļĢāļ‡āļāļĢāļ°āļšāļ­āļāļ‚āļ™āļēāļ” 100 × 50 āļĄāļīāļĨāļĨāļīāđ€āļĄāļ•āļĢ āļŠāļģāļŦāļĢāļąāļšāļ—āļ”āļŠāļ­āļšāļāļēāļĢāļ‹āļķāļĄāļœāđˆāļēāļ™āđ„āļ”āđ‰āļ‚āļ­āļ‡āļ„āļĨāļ­āđ„āļĢāļ”āđŒ āļžāļšāļ§āđˆāļē āļĄāļ­āļĢāđŒāļ•āļēāļĢāđŒāļœāļŠāļĄāļ”āļīāļ™āļ‚āļēāļ§āđāļ›āļĢāļĢāđ‰āļ­āļĒāļĨāļ° 20 āļĄāļĩāļāļģāļĨāļąāļ‡āļ­āļąāļ”āļŠāļđāļ‡āļŠāļļāļ”āļ—āļĩāđˆāļ­āļļāļ“āļŦāļ āļđāļĄāļīāļŦāđ‰āļ­āļ‡āđāļĨāļ°āļ—āļĩāđˆāļ­āļļāļ“āļŦāļ āļđāļĄāļī 400 āļ­āļ‡āļĻāļēāđ€āļ‹āļĨāđ€āļ‹āļĩāļĒāļŠ āļĄāļĩāļ„āđˆāļēāļāļēāļĢāļ™āļģāļ„āļ§āļēāļĄāļĢāđ‰āļ­āļ™āļ•āđˆāļģāļāļ§āđˆāļēāļ•āļąāļ§āļ­āļĒāđˆāļēāļ‡āļ„āļ§āļšāļ„āļļāļĄ āđāļĨāļ°āļĄāļĩāļāļēāļĢāļ‹āļķāļĄāļœāđˆāļēāļ™āđ„āļ”āđ‰āļ‚āļ­āļ‡āļ›āļĢāļ°āļˆāļļāļ„āļĨāļ­āđ„āļĢāļ”āđŒāļ•āđˆāļģāļ—āļĩāđˆāļŠāļļāļ” āļŠāļģāļŦāļĢāļąāļšāļ•āļąāļ§āļ­āļĒāđˆāļēāļ‡āļœāļŠāļĄāļ•āļ°āļāļĢāļąāļ™āđ€āļ–āđ‰āļēāđ€āļŠāļ·āđ‰āļ­āđ€āļžāļĨāļīāļ‡āļ›āļēāļĨāđŒāļĄāļ™āđ‰āļģāļĄāļąāļ™āđāļĨāļ°āļ”āļīāļ™āļ‚āļēāļ§āđāļ›āļĢāļĢāđ‰āļ­āļĒāļĨāļ° 10 āļĄāļĩāļŠāļĄāļĢāļĢāļ–āļ™āļ°āđ€āļŠāļīāļ‡āļāļĨāļĄāļēāļāļāļ§āđˆāļēāļ•āļąāļ§āļ­āļĒāđˆāļēāļ‡āļ„āļ§āļšāļ„āļļāļĄ āđ€āļĄāļ·āđˆāļ­āļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļ”āđ‰āļ§āļĒāļ āļēāļžāļ–āđˆāļēāļĒāļˆāļļāļĨāļ—āļĢāļĢāļĻāļ™āđŒāļ­āļīāđ€āļĨāđ‡āļāļ•āļĢāļ­āļ™āđāļšāļšāļŠāđˆāļ­āļ‡āļāļĢāļēāļ” āļžāļšāļ§āđˆāļē C-S-H āđāļĨāļ° C-A-H āļ‹āļķāđˆāļ‡āđ„āļ”āđ‰āļˆāļēāļāļ›āļāļīāļāļīāļĢāļīāļĒāļēāđ„āļŪāđ€āļ”āļĢāļŠāļąāļ™āđāļĨāļ°āļ›āļāļīāļāļīāļĢāļīāļĒāļēāļ›āļ­āļ‹āđ‚āļ‹āļĨāļēāļ™ āļŠāđˆāļ§āļĒāļžāļąāļ’āļ™āļēāļŠāļĄāļĢāļĢāļ–āļ™āļ°āđ€āļŠāļīāļ‡āļāļĨ āļŠāļēāļĄāļēāļĢāļ–āļ—āļ™āļ•āđˆāļ­āļ­āļļāļ“āļŦāļ āļđāļĄāļīāļŠāļđāļ‡ āđāļĨāļ°āļĨāļ”āļāļēāļĢāđ„āļŦāļĨāļœāđˆāļēāļ™āļ‚āļ­āļ‡āļ›āļĢāļ°āļˆāļļāļ„āļĨāļ­āđ„āļĢāļ”āđŒThis research aims to investigate the performance of lightweight aggregate mortar containing pumice blended with palm oil fuel ash clinker and metakaolin for elevated temperatures and chloride permeability resistance. Specimens were carried out by replacing Ordinary Portland cement with palm oil fuel ash clinker and metakaolin at a percentage of 0, 10, 20 and 30 by weight of binder. The water to binder ratio of 0.35 was fixed for all specimens. Specimens were cured in ambient temperature for the period of 3, 7, 28, 56 and 90 days. The compressive strength and water losing value in ambient and elevated temperatures (200 and 400°C) were determined for hardened cubic specimens in size of 50 × 50 × 50 mm. Rapid chloride permeability test was determined with 100 × 50 mm cylindrical specimen. The specimen blended with 20% metakaolin content has the highest compressive strength in ambient temperature and at 400°C; the thermal conductivity value is also lower than the control specimen. Moreover, the rapid chloride permeability test provided the lowest chloride ion charge passed. The specimen blended with 10% palm oil fuel ash clinker incorporating metakaolin has surpassed compressive strength than the control specimen. SEM microphotographs recognized C-S-H and C-A-H crystals which are products from hydration and pozzolanic activity that uphold the mechanical performance, resist elevated temperature and suppress the charge passed

    Effect of water-to-powder ratios on the compressive strength and microstructure of metakaolin based geopolymers

    Get PDF
    499-506This study investigated the properties of geopolymer mortars prepared from metakaolin (MK) partially replaced with oil palm ash (OPA). The geopolymer blend had an alkaline activator (sodium silicate, sodium hydroxide, and water). The main parameters studied were compressive strength, microstructure, and sulfuric acid resistance (losses of strength and mass). Geopolymers were made varying the heat curing and the water to powder ratio (w/p set at 0.45, 0.55, and 0.65). The geopolymer samples were cured at 80°C for 0.5, 1, 2, or 4 h and kept at ambient temperature until testing. The partial substitution of MK by OPA was set at 5, 10, and 15 wt% in the mixtures. The compressive strength was measured after 2, 6, and 24 h and 7 and 28 days. The matrix structure effects were examined using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). The results revealed that the geopolymer mortar with 5% OPA and water to powder ratio 0.45 was superior to the other samples. SEM imaging indicated that it had a dense-compact matrix structure, which contributed to the highest compressive strength

    INVESTIGATING THE EFFECTS OF OIL PALM ASH IN METAKAOLIN BASED GEOPOLYMER

    No full text
    This research reports on the microstructure, compressive strength, drying shrinkage and sulfate expansion of metakaolin (MK) based geopolymers produced by partially replacing MK by oil palm ash (OPA) in proportions of 0 %, 5 %, 10 % and 15 % by weight. The specimens were cured at a temperature of 80°C for 1, 2 and 4 hours, and compressive strength test were conducted at ambient temperature at 2, 6, 24 hours, 7 and 28 day. The testing results revealed that the geopolymer with 5 % OPA gave the highest compressive strength. Scanning electron microscopy (SEM) indicated that the 5 % OPA sample had a dense-compact matrix and less unreacted raw materials which contributed to the higher compressive strength. In the X-ray diffraction (XRD) patterns, the change of the crystalline phase for higher strength was easily detectable compared lower strength

    Development and Performance Evaluation of Very High Early Strength Geopolymer for Rapid Road Repair

    No full text
    High early strength is the most important property of pavement repair materials to allow quick reopening to traffic. With this in mind, we have experimentally investigated geopolymers using low cost raw materials available in Thailand. The geopolymer mortar was metakaolin (MK), mixed with parawood ash (PWA, rubberwood ash) or oil palm ash (OPA) as binder agent. Rubberwood is often used as raw material for biomass power plants in Thailand, especially at latex glove factories and seafood factories, and burning rubberwood generates PWA. Both PWA and OPA are therefore low cost residual waste, locally available in mass quantities. The geopolymer samples were characterized for compressive strength, drying shrinkage, and bond strength to Portland cement mortar with slant shear test. The experimental design varied the contents of PWA and OPA and the heat curing time (1, 2 and 4 h) after hot mixture process. The hot mixture process resulted in very high early strength. In addition, we achieved high compressive strengths, low drying shrinkage, and very significant bond strength enhancement by use of the ashes

    āļœāļĨāļ‚āļ­āļ‡āļ™āđ‰āļģāļĄāļąāļ™āđ€āļ„āļĢāļ·āđˆāļ­āļ‡āđƒāļŠāđ‰āđāļĨāđ‰āļ§āļ•āđˆāļ­āļŠāļĄāļšāļąāļ•āļīāļ‚āļ­āļ‡āļĄāļ­āļĢāđŒāļ•āđ‰āļēāļĢāđŒāļŦāļīāļ™āļžāļąāļĄāļĄāļīāļ‹āļœāļŠāļĄāđ€āļ–āđ‰āļēāđ„āļĄāđ‰āļĒāļēāļ‡āļžāļēāļĢāļē

    No full text
    āļ§āļēāļĢāļŠāļēāļĢāļ§āļīāļŠāļēāļāļēāļĢāđāļĨāļ°āļ§āļīāļˆāļąāļĒ āļĄāļ—āļĢ.āļžāļĢāļ°āļ™āļ„āļĢ, 12(1) : 53-63Properties of pumice aggregate mortar blended with para rubber wood fly ash (PRWFA) replaced type 1 ordinary Portland cement (OPC) in different proportions of 0,20 and 40 wt.% OPC and dosed with used engine oil (UEO) in proportions of 0,0.2 and 0.3 wt% water were investigated. Whole mix type specimens size was cast in 555 cm and curing in ambient temperature for 7 and 28 days. Testing series of physico-mechanical properties performed on bulk density, water absorption, electrical resistivity, Shore hardness, and compressive strength were determined. Moreover, microstructure via scanning electron microscope was analyzed. Effect of curing ages enhanced properties of samples such as electrical resistivity, Shore hardness, and compressive strength. Particularly, the 28-day specimen that contained 20wt.% PRWFA and 0.2wt.% UEO, provided bulk density of 1.61 g/cm3 and highest compressive strength of 22.09 MPa.Rajamangala University of Technology Phra Nakho

    āļĨāļąāļāļĐāļ“āļ°āļ§āļąāļŠāļ”āļļāļœāļŠāļĄāļ‹āļĩāđ€āļĄāļ™āļ•āđŒāđ€āļžāļŠāļ•āđŒāļāļąāļšāđ€āļ–āđ‰āļēāđ€āļŠāđ‰āļ™āđƒāļĒāļœāļĨāļ•āļēāļĨāđ‚āļ•āļ™āļ”āđƒāļŠāđˆāļ—āđˆāļ­āļ™āļēāđ‚āļ™āļ„āļēāļĢāđŒāļšāļ­āļ™āļœāļ™āļąāļ‡āļŠāļąāđ‰āļ™āđ€āļ”āļĩāļĒāļ§āļŠāļ™āļīāļ”āļŠāļąāđ‰āļ™āļœāđˆāļēāļ™āļāļēāļĢāļ›āļĢāļąāļšāļ›āļĢāļļāļ‡āļœāļīāļ§āļ āļēāļĒāļ™āļ­āļāļ”āđ‰āļ§āļĒāļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāļŠāļļāļšāļœāļīāļ§āđ‚āļ”āļĒāđ„āļĄāđˆāđƒāļŠāđ‰āđ„āļŸāļŸāđ‰āļē

    Get PDF
    āļ§āļēāļĢāļŠāļēāļĢāļ§āļīāļŠāļēāļāļēāļĢāđāļĨāļ°āļ§āļīāļˆāļąāļĒ āļĄāļ—āļĢ.āļžāļĢāļ°āļ™āļ„āļĢ, āļ›āļĩāļ—āļĩāđˆ 15, āļ‰āļšāļąāļšāļ—āļĩāđˆ 1 (āļĄ.āļ„.-āļĄāļī.āļĒ. 2564), āļŦāļ™āđ‰āļē 129-144This research was resulted of the characterization of cement paste composites (CPC) blended with palmyra fiber ash and surface-treated on short SWNT prepared by an electroless plating process. The cement paste composites included cement, 270 meshes of palmyra fiber ash and short SWNT. The design of experiment was divided into 3 conditions namely uncuring, 28 and 56 days in distilled water. The properties of CPC were carried out in chemical composition, physical, mechanical, mineral phase, microstructure and statistical analysis. It was found that in the chemical compositions an amount of silicon dioxide, aluminium oxide and ferric oxide were 51.53%, which was rated in class C. The bulk densities of CPC series between PFA10 (C) and PFA5AgSWNT0.01 (G) cured 56-day distilled water were an increased 38%. Then, the highest specific electrical resistivity of CPC series PFA5OSWNT0.03 (F) cured 56-day distilled water was 1.14Âą0.31 mega-ohm.mm. The highest compressive strength of CPC series PFA5AgSWNT0.01 (G) cured at 28-day distilled water was 25.45Âą2.00 MPa compared with the OPC (A) was an increased 5%. Which, the bulk densities of CPC series between PFA10 (C) and PFA5AgSWNT0.01 (G) were statistical analyzed the mostly cured at significant difference, Îą = 0.05. In addition, CPC series PFA5AgSWNT0.01 (G) mainly contained calcite, portlandite, quartz dolomite and ettringite were caused increasing compressive strength. And the SEM microphotograph were also displayed the calcium silicate hydrate, portlandite and ettringite. Consequently, the PFA was used to ability pozzolanic material using for lightweight concrete of CPC.Rajamangala University of Technology Phra Nakho
    corecore