5 research outputs found

    Structural and mutational characterization of the catalytic A-module of the mannuronan C-5-epimerase AlgE4 from Azotobacter vinelandii

    Get PDF
    Alginate is a family of linear copolymers of (1→4)-linked β-d-mannuronic acid and its C-5 epimer α-l-guluronic acid. The polymer is first produced as polymannuronic acid and the guluronic acid residues are then introduced at the polymer level by mannuronan C-5-epimerases. The structure of the catalytic A-module of the Azotobacter vinelandii mannuronan C-5-epimerase AlgE4 has been determined by x-ray crystallography at 2.1-Å resolution. AlgE4A folds into a right-handed parallel β-helix structure originally found in pectate lyase C and subsequently in several polysaccharide lyases and hydrolases. The β-helix is composed of four parallel β-sheets, comprising 12 complete turns, and has an amphipathic α-helix near the N terminus. The catalytic site is positioned in a positively charged cleft formed by loops extending from the surface encompassing Asp(152), an amino acid previously shown to be important for the reaction. Site-directed mutagenesis further implicates Tyr(149), His(154), and Asp(178) as being essential for activity. Tyr(149) probably acts as the proton acceptor, whereas His(154) is the proton donor in the epimerization reaction

    Construction and analyses of hybrid Azotobacter vinelandii mannuronan C-5 epimerases with new epimerization pattern characteristics

    No full text
    The secreted mannuronan C-5 epimerases from Azotobacter vinelandii form a family of seven homologous modular type enzymes, which appear to have evolved through duplications and point mutations in the individual modules. The catalytic A modules of these enzymes are responsible for generating the characteristic sequence distribution patterns of G residues in the industrially important polymer alginate by epimerizing M (β-D-mannuronic acid) moieties to G (α-L-guluronic acid). Forty-six different hybrid enzymes were constructed by exchanging parts of the sequences encoding the A modules of AlgE2 (generates consecutive stretches of G residues) and AlgE4 (generates alternating structures). These hybrid enzymes introduce a variety of new monomer-sequence patterns into their substrates, and some regions important for the subsite specificity or processivity of the enzymes were identified. By using time-resolved NMR spectroscopy, it became clear that the rates for introducing alternating structures and consecutive stretches of G residues are different for each enzyme, and that it is the ratio between these rates that determines the overall epimerization pattern. These findings open up new possibilities in biotechnology and in studies of the many biological functions of alginates
    corecore