35 research outputs found

    The effect of pharmacological treatment on ADMA in patients with heart failure.

    Get PDF
    Asymmetric dimethylarginine (ADMA) plays a crucial role in the arginine-nitric oxide (NO) pathway. NO plays an important role in controlling vascular tone and regulates the contractile properties of cardiac myocytes. The purpose of this study was to investigate the effect of pharmacological treatment on asymmetrical dimethylarginine (ADMA) plasma levels in patients with acute congestive heart failure (HF). Patients with symptomatic acute congestive HF (NYHA Class III-IV) and impaired left ventricular (LV) function (ejection fraction less than 40 percent) were included in the study. ADMA and SDMA concentrations were assessed before and after pharmacological treatment in 18 critically ill patients on the intensive care unit by high performance liquid chromatography. All patients received a complete pharmacological treatment (diuretics, digoxin, ACE-inhibitors or angiotensin receptor blockers, and nitroglicerin) for the treatment of acute congestive HF. ADMA plasma levels of critically ill patients were significantly higher after pharmacological treatment respect baseline values (pre-treatment). In critically ill patients with acute congestive HF acute renal impairment function and the modulation of NOS determine plasma ADMA/SDMA levels after therapy

    Iron deficiency in myocardial ischaemia: molecular mechanisms and therapeutic perspectives

    No full text
    Systemic iron deficiency (SID), even in the absence of anaemia, worsens the prognosis and increases mortality in heart failure (HF). Recent clinical-epidemiological studies, however, have shown that a myocardial iron deficiency (MID) is frequently present in cases of severe HF, even in the absence of SID and without anaemia. In addition, experimental studies have shown a poor correlation between the state of systemic and myocardial iron. MID in animal models lead to severe mitochondrial dysfunction, alterations of mitophagy, and mitochondrial biogenesis, with profound alterations in cardiac mechanics and the occurrence of a fatal cardiomyopathy, all effects prevented by intravenous administration of iron. This shifts the focus to the myocardial state of iron, in the absence of anaemia, as an important factor in prognostic worsening and mortality in HF. There is now epidemiological evidence that SID worsens prognosis and mortality also in patients with acute and chronic coronary heart disease and experimental evidence that MID aggravates acute myocardial ischaemia as well as post-ischaemic remodelling. Intravenous administration of ferric carboxymaltose (FCM) or ferric dextrane improves post-ischaemic adverse remodelling. We here review such evidence, propose that MID worsens ischaemia/reperfusion injury, and discuss possible molecular mechanisms, such as chronic hyperactivation of HIF1-& alpha;, exacerbation of cytosolic and mitochondrial calcium overload, amplified increase of mitochondrial [NADH]/[NAD+] ratio, and depletion of energy status and NAD+ content with inhibition of sirtuin 1-3 activity. Such evidence now portrays iron metabolism as a core factor not only in HF but also in myocardial ischaemia.Graphical abstrac

    UHPLC-UV/Vis Quantitative Analysis of Hydroxylated and <i>O</i>-prenylated Coumarins in Pomegranate Seed Extracts

    No full text
    A simple and rapid analytical UHPLC methodology with spectrophotometric (UV/Vis) detection, coupled with different extraction procedures, has been perfected to investigate the presence of biologically active O-prenylated umbelliferone derivatives, such as auraptene and umbelliprenin, in pomegranate (Punica granatum L.) seed extracts. Absolute ethanol was the most efficient extraction solvent in terms of yields, after a short ultrasound-assisted. The highest concentration values recorded under these experimental conditions were 1.99 &#956;g/g of dry extract and 6.53 &#956;g/g for auraptene and umbelliprenin, respectively. The parent metabolite umbelliferone was also detected (0.67 &#956;g/g). The extraction and UHPLC analytical methodology set up in the present study proved to be an efficient, powerful, and versatile technique for the simultaneous qualitative analysis and quantification of oxyprenylated coumarins in pomegranate seed extracts. The characterization of such secondary metabolites in the mentioned phytopreparation represents, to the best of our knowledge, the first example in the literature

    ADMA/SDMA in Elderly Subjects with Asymptomatic Carotid Atherosclerosis: Values and Site-Specific Association

    No full text
    Asymmetric dimethylarginine (ADMA) is an endogenous nitric oxide synthase (NOS) inhibitor known as a mediator of endothelial dysfunction and atherosclerosis. Circulating ADMA levels are correlated with cardiovascular risk factors such as hypercholesterolemia, arterial hypertension, diabetes mellitus, hyperhomocysteinemia, age and smoking. We assessed the relationship between ADMA values and site-specific association of asymptomatic carotid atherosclerosis (intima-media thickness (CIMT) and plaque) in elderly subjects. One hundred and eighty subjects underwent a complete history and physical examination, determination of serum chemistries and ADMA levels, and carotid ultrasound investigation (CUI). All subjects had no acute or chronic symptoms of carotid atherosclerosis. Statistical analyses showed that high plasma levels of ADMA/SDMA were positively correlated to carotid atherosclerosis (CIMT and plaque) (p &lt; 0.001), with significant site-specific association. Total cholesterol, low density lipoprotein cholesterol, triglycerides and C-reactive protein plasma concentrations were significantly associated with asymptomatic carotid atherosclerosis (p &lt; 0.001). High serum concentrations of ADMA and SDMA were associated with carotid atherosclerotic lesions as measured by CIMT ad plaque and may represent a new marker of asymptomatic carotid atherosclerosis in elderly subjects

    Oxidation of Cys278 of ADH I isozyme from Kluyveromyces lactis by naturally occurring disulfides causes its reversible inactivation

    No full text
    The inactivation of the homotetrameric cytosolic alcohol dehydrogenase I from Kluyveromyces lactis (KIADH 1) by naturally occurring disulfides, oxidized glutathione, cystine and cystamine, was studied. The inactivation was fully reversed by dithiothreitol. The nicotinamide coenzyme, but not the substrate ethanol, protected KIADH I from inactivation. Gel filtration experiments and SDS-PAGE analysis, also, revealed that enzyme inactivation coincides with inter-subunits disulfide bond formation which are noticeably enhanced after prolonged oxidation with GSSG. Moreover, oxidized KIADH 1, as its reduced state, retained the tetrameric stucture and appears mainly as a dimer under non-reducing SIDS-PAGE. Conversely, KIADH I Cys278Ile mutant is unaffected by disulfides treatment. Therefore, in vitro, KIADH I wild-type could exist in two reversible forms: reduced (active) and oxidized (inactive), in which the Cys278 residues of each tetramer are linked by disulfide bonds. The redox state of KIADH I could represent the path for modulating its activity and then a regulatory step of glycolysis under hypoxic conditions. It might be hypothesized that KIADH I could represent an important target in redox signaling of Kluyveromyces lactis cell by inhibiting, under oxidative stress, the glycolytic pathway in favor of the pentose-phosphate shunt to restore its reducing potential. (C) 2008 Elsevier B.V. All rights reserved

    Genetic determinants of blood pressure responses to caffeine drinking

    No full text
    The widely observed between-subject variability in cardiovascular responses to coffee may have a genetic basis. OBJECTIVE: We evaluated acute blood pressure (BP) responses to caffeine and explored whether they are influenced by candidate gene variants affecting caffeine metabolism (for cytochrome P450 1A2), adenosine metabolism (for adenosine receptor and AMP deaminase), or catecholamine receptors. METHODS: We recruited 110 healthy male habitual moderate coffee drinkers who refrained from drinking coffee on the day preceding the study. Each subject underwent ambulatory BP monitoring at 6-min intervals for 2 h. Each participant was administered, in a double-blind design, 40 mL of either a decaffeinated coffee preparation plus 3 mg caffeine/kg (caf) or the corresponding vehicle (decaf). The protocol was repeated 24 h later with the alternative preparation. Blood samples were collected for genetic and plasma caffeine and catecholamine evaluations. RESULTS: Compared with decaf, caf was associated with a mean (± SD) significant increase in systolic BP of 4 ± 12 mm Hg and in diastolic BP of 3 ± 10 mm Hg (P < 0.001 for both). Plasma caffeine and adrenaline increased after caf, but not after decaf. Of 11 gene polymorphisms analyzed, a relation was observed between the ADORA2A TT variant and the change in SBP peak and between the ADRA2B I variant and the changes in both SBP mean and peak; mean peak change in SBP; these variants were associated with increased SBP responses to caf. CONCLUSIONS: Variability in the acute BP response to coffee may be partly explained by genetic polymorphisms of the adenosine A2A receptors and α(2)-adrenergic receptors. This trial is registered at clinicaltrials.gov as NCT01330680

    Data_Sheet_2_Electrochemically Synthesized Silver Nanoparticles Are Active Against Planktonic and Biofilm Cells of Pseudomonas aeruginosa and Other Cystic Fibrosis-Associated Bacterial Pathogens.PDF

    No full text
    <p>A novel, electrochemically synthesized, silver nanoparticles (AgNPs) formulation was evaluated in vitro against Pseudomonas aeruginosa, Burkholderia cepacia, Stenotrophomonas maltophilia, and Staphylococcus aureus strains from cystic fibrosis (CF) patients. AgNPs were particularly active against P. aeruginosa and B. cepacia planktonic cells (median MIC: 1.06 and 2.12 μg/ml, respectively) by a rapid, bactericidal and concentration-dependent effect. AgNPs showed to be particularly effective against P. aeruginosa and S. aureus biofilm causing a viability reduction ranging from 50% (1×MIC) to >99.9% (4×MIC). Electron microscopy showed that AgNPs deconstruct extracellular matrix of P. aeruginosa biofilm, and accumulate at the cell surface causing cell death secondary to membrane damage. Compared to Tobramycin, AgNPs showed comparable, or even better, activity against planktonic and biofilm P. aeruginosa cells. AgNPs at concentrations effective against B. cepacia and P. aeruginosa were not toxic to G. mellonella larvae. Our silver-based formulation might be an alternative to antibiotics in CF patients. Further in vitro and in vivo studies are warranted to confirm this therapeutic potential.</p
    corecore