108 research outputs found

    Constructive Provability Logic

    Full text link
    We present constructive provability logic, an intuitionstic modal logic that validates the L\"ob rule of G\"odel and L\"ob's provability logic by permitting logical reflection over provability. Two distinct variants of this logic, CPL and CPL*, are presented in natural deduction and sequent calculus forms which are then shown to be equivalent. In addition, we discuss the use of constructive provability logic to justify stratified negation in logic programming within an intuitionstic and structural proof theory.Comment: Extended version of IMLA 2011 submission of the same titl

    On polymorphic sessions and functions: a tale of two (fully abstract) encodings

    Get PDF
    This work exploits the logical foundation of session types to determine what kind of type discipline for the Λ-calculus can exactly capture, and is captured by, Λ-calculus behaviours. Leveraging the proof theoretic content of the soundness and completeness of sequent calculus and natural deduction presentations of linear logic, we develop the first mutually inverse and fully abstract processes-as-functions and functions-as-processes encodings between a polymorphic session π-calculus and a linear formulation of System F. We are then able to derive results of the session calculus from the theory of the Λ-calculus: (1) we obtain a characterisation of inductive and coinductive session types via their algebraic representations in System F; and (2) we extend our results to account for value and process passing, entailing strong normalisation

    Domain-Aware Session Types

    Get PDF
    We develop a generalization of existing Curry-Howard interpretations of (binary) session types by relying on an extension of linear logic with features from hybrid logic, in particular modal worlds that indicate domains. These worlds govern domain migration, subject to a parametric accessibility relation familiar from the Kripke semantics of modal logic. The result is an expressive new typed process framework for domain-aware, message-passing concurrency. Its logical foundations ensure that well-typed processes enjoy session fidelity, global progress, and termination. Typing also ensures that processes only communicate with accessible domains and so respect the accessibility relation. Remarkably, our domain-aware framework can specify scenarios in which domain information is available only at runtime; flexible accessibility relations can be cleanly defined and statically enforced. As a specific application, we introduce domain-aware multiparty session types, in which global protocols can express arbitrarily nested sub-protocols via domain migration. We develop a precise analysis of these multiparty protocols by reduction to our binary domain-aware framework: complex domain-aware protocols can be reasoned about at the right level of abstraction, ensuring also the principled transfer of key correctness properties from the binary to the multiparty setting

    Interconnection networks in session-based logical processes

    Get PDF
    In multiparty session types, interconnection networks identify which roles in a session engage in direct communication. If role p is connected to role q, then p exchanges a message with q. In a session-based interpretation of classical linear logic (CLL), this corresponds to the composition, or cut, of dual propositions. This paper shows that well-formed interactions represented in a session-based interpretation of CLL form strictly less expressive interconnection networks than those specified in a multiparty session calculus. To achieve this, we introduce a new compositional synthesis property, dubbed partial multiparty compatibility (PMC), enabling us to build a global type denoting the interactions obtained by iterated composition of well-typed CLL processes.We show that the CLL composition rule induces PMC global types without circular interconnections between three participants. PMC is then used to define a new CLL multicut rule which can form general multiparty interconnections, preserving the deadlock-freedom property of CLL

    On polymorphic sessions and functions: A tale of two (fully abstract) encodings

    Get PDF
    This work exploits the logical foundation of session types to determine what kind of type discipline for the -calculus can exactly capture, and is captured by, -calculus behaviours. Leveraging the proof theoretic content of the soundness and completeness of sequent calculus and natural deduction presentations of linear logic, we develop the first mutually inverse and fully abstract processes-as-functions and functions-as-processes encodings between a polymorphic session -calculus and a linear formulation of System F. We are then able to derive results of the session calculus from the theory of the -calculus: (1) we obtain a characterisation of inductive and coinductive session types via their algebraic representations in System F; and (2) we extend our results to account for value and process passing, entailing strong normalisation

    Cut Reduction in Linear Logic as Asynchronous Session-Typed Communication

    Get PDF
    Prior work has shown that intuitionistic linear logic can be seen as a session-type discipline for the pi-calculus, where cut reduction in the sequent calculus corresponds to synchronous process reduction. In this paper, we exhibit a new process assignment from the asynchronous, polyadic pi-calculus to exactly the same proof rules. Proof-theoretically, the difference between these interpretations can be understood through permutations of inference rules that preserve observational equivalence of closed processes in the synchronous case. We also show that, under this new asynchronous interpretation, cut reductions correspond to a natural asynchronous buffered session semantics, where each session is allocated a separate communication buffer

    The Session Abstract Machine (Extended Version)

    Full text link
    We build on a fine-grained analysis of session-based interaction as provided by the linear logic typing disciplines to introduce the SAM, an abstract machine for mechanically executing session-typed processes. A remarkable feature of the SAM's design is its ability to naturally segregate and coordinate sequential with concurrent session behaviours. In particular, implicitly sequential parts of session programs may be efficiently executed by deterministic sequential application of SAM transitions, amenable to compilation, and without concurrent synchronisation mechanisms. We provide an intuitive discussion of the SAM structure and its underlying design, and state and prove its correctness for executing programs in a session calculus corresponding to full classical linear logic CLL. We also discuss extensions and applications of the SAM to the execution of linear and session-based programming languages.Comment: Extended Version of ESOP pape

    A logical foundation for session-based concurrent computation

    Get PDF
    Linear logic has long been heralded for its potential of providing a logical basis for concurrency. While over the years many research attempts were made in this regard, a Curry-Howard correspondence between linear logic and concurrent computation was only found recently, bridging the proof theory of linear logic and session-typed process calculus. Building upon this work, we have developed a theory of intuitionistic linear logic as a logical foundation for session-based concurrent computation, exploring several concurrency related phenomena such as value-dependent session types and polymorphic sessions within our logical framework in an arguably clean and elegant way, establishing with relative ease strong typing guarantees due to the logical basis, which ensure the fundamental properties of type preservation and global progress, entailing the absence of deadlocks in communication. We develop a general purpose concurrent programming language based on the logical interpretation, combining functional programming with a concurrent, session-based process layer through the form of a contextual monad, preserving our strong typing guarantees of type preservation and deadlock-freedom in the presence of general recursion and higher-order process communication. We introduce a notion of linear logical relations for session typed concurrent processes, developing an arguably uniform technique for reasoning about sophisticated properties of session-based concurrent computation such as termination or equivalence based on our logical approach, further supporting our goal of establishing intuitionistic linear logic as a logical foundation for sessionbased concurrency

    A Universal Session Type for Untyped Asynchronous Communication

    Get PDF
    In the simply-typed lambda-calculus we can recover the full range of expressiveness of the untyped lambda-calculus solely by adding a single recursive type U = U -> U. In contrast, in the session-typed pi-calculus, recursion alone is insufficient to recover the untyped pi-calculus, primarily due to linearity: each channel just has two unique endpoints. In this paper, we show that shared channels with a corresponding sharing semantics (based on the language SILL_S developed in prior work) are enough to embed the untyped asynchronous pi-calculus via a universal shared session type U_S. We show that our encoding of the asynchronous pi-calculus satisfies operational correspondence and preserves observable actions (i.e., processes are weakly bisimilar to their encoding). Moreover, we clarify the expressiveness of SILL_S by developing an operationally correct encoding of SILL_S in the asynchronous pi-calculus
    • …
    corecore