960 research outputs found

    A (2+1)-dimensional growth process with explicit stationary measures

    Full text link
    We introduce a class of (2+1)-dimensional stochastic growth processes, that can be seen as irreversible random dynamics of discrete interfaces. "Irreversible" means that the interface has an average non-zero drift. Interface configurations correspond to height functions of dimer coverings of the infinite hexagonal or square lattice. The model can also be viewed as an interacting driven particle system and in the totally asymmetric case the dynamics corresponds to an infinite collection of mutually interacting Hammersley processes. When the dynamical asymmetry parameter (p−q)(p-q) equals zero, the infinite-volume Gibbs measures πρ\pi_\rho (with given slope ρ\rho) are stationary and reversible. When p≠qp\ne q, πρ\pi_\rho are not reversible any more but, remarkably, they are still stationary. In such stationary states, we find that the average height function at any given point xx grows linearly with time tt with a non-zero speed: EQx(t):=E(hx(t)−hx(0))=V(ρ)t\mathbb E Q_x(t):=\mathbb E(h_x(t)-h_x(0))= V(\rho) t while the typical fluctuations of Qx(t)Q_x(t) are smaller than any power of tt as t→∞t\to\infty. In the totally asymmetric case of p=0,q=1p=0,q=1 and on the hexagonal lattice, the dynamics coincides with the "anisotropic KPZ growth model" introduced by A. Borodin and P. L. Ferrari. For a suitably chosen, "integrable", initial condition (that is very far from the stationary state), they were able to determine the hydrodynamic limit and a CLT for interface fluctuations on scale log⁥t\sqrt{\log t}, exploiting the fact that in that case certain space-time height correlations can be computed exactly.Comment: 37 pages, 13 figures. v3: some references added, introduction expanded, minor changes in the bul

    Disordered pinning models and copolymers: beyond annealed bounds

    Full text link
    We consider a general model of a disordered copolymer with adsorption. This includes, as particular cases, a generalization of the copolymer at a selective interface introduced by Garel et al. [Europhys. Lett. 8 (1989) 9--13], pinning and wetting models in various dimensions, and the Poland--Scheraga model of DNA denaturation. We prove a new variational upper bound for the free energy via an estimation of noninteger moments of the partition function. As an application, we show that for strong disorder the quenched critical point differs from the annealed one, for example, if the disorder distribution is Gaussian. In particular, for pinning models with loop exponent 0<α<1/20<\alpha<1/2 this implies the existence of a transition from weak to strong disorder. For the copolymer model, under a (restrictive) condition on the law of the underlying renewal, we show that the critical point coincides with the one predicted via renormalization group arguments in the theoretical physics literature. A stronger result holds for a "reduced wetting model" introduced by Bodineau and Giacomin [J. Statist. Phys. 117 (2004) 801--818]: without restrictions on the law of the underlying renewal, the critical point coincides with the corresponding renormalization group prediction.Comment: Published in at http://dx.doi.org/10.1214/07-AAP496 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Spiral model, jamming percolation and glass-jamming transitions

    Full text link
    The Spiral Model (SM) corresponds to a new class of kinetically constrained models introduced in joint works with D.S. Fisher [8,9]. They provide the first example of finite dimensional models with an ideal glass-jamming transition. This is due to an underlying jamming percolation transition which has unconventional features: it is discontinuous (i.e. the percolating cluster is compact at the transition) and the typical size of the clusters diverges faster than any power law, leading to a Vogel-Fulcher-like divergence of the relaxation time. Here we present a detailed physical analysis of SM, see [5] for rigorous proofs. We also show that our arguments for SM does not need any modification contrary to recent claims of Jeng and Schwarz [10].Comment: 9 pages, 7 figures, proceedings for StatPhys2

    Kinetically constrained spin models on trees

    Full text link
    We analyze kinetically constrained 0-1 spin models (KCSM) on rooted and unrooted trees of finite connectivity. We focus in particular on the class of Friedrickson-Andersen models FA-jf and on an oriented version of them. These tree models are particularly relevant in physics literature since some of them undergo an ergodicity breaking transition with the mixed first-second order character of the glass transition. Here we first identify the ergodicity regime and prove that the critical density for FA-jf and OFA-jf models coincide with that of a suitable bootstrap percolation model. Next we prove for the first time positivity of the spectral gap in the whole ergodic regime via a novel argument based on martingales ideas. Finally, we discuss how this new technique can be generalized to analyze KCSM on the regular lattice Zd\mathbb{Z}^d.Comment: Published in at http://dx.doi.org/10.1214/12-AAP891 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Dynamical arrest, tracer diffusion and Kinetically Constrained Lattice Gases

    Full text link
    We analyze the tagged particle diffusion for kinetically constrained models for glassy systems. We present a method, focusing on the Kob-Andersen model as an example, which allows to prove lower and upper bounds for the self diffusion coefficient DSD_S. This method leads to the exact density dependence of DSD_{S}, at high density, for models with finite defects and to prove diffusivity, DS>0D_{S}>0, at any finite density for highly cooperative models. A more general outcome is that under very general assumptions one can exclude that a dynamical transition, like the one predicted by the Mode-Coupling-Theory of glasses, takes place at a finite temperature/chemical potential for systems of interacting particles on a lattice.Comment: 28 pages, 4 figure

    The Atlantic divide: methodological and epistemological differences in economic history

    Get PDF
    In the paper the development of economic history will be placed within the evolution of Western thought and culture. Therefore an analysis of the connections between economic history and contemporary epistemology will be carried out. In this perspective an analogy with the traditional division between analytic philosophy and continental philosophy would appear to be useful for economic history too: the first had long prevailed in Anglo-Saxon, the second in continental, culture. This partition evokes and embraces the antithesis between scientific and humanist culture, between logic and rhetoric, analysis and interpretation, conceptual clarification and visions of the world. The paper suggest that the opposition that loomed large over the post W.W.II decades between Anglo-American and European economic histories can also be conceived as a specific form of the wider opposition between ‘analytic style’ and ‘continental style’.economic history, methodology, epistemology, cliometrics, business history, economic thought
    • 

    corecore