781 research outputs found

    The description of gravitational waves in geometric scalar gravity

    Full text link
    It is investigated the gravitational waves phenomena in the geometric scalar theory of gravity (GSG), a class of theories such that gravity is described by a single scalar field. The associated physical metric describing the spacetime is constructed from a disformal transformation of Minkowski geometry. In this theory, a weak field approximation gives rise to a description similar to that one obtained in general relativity, with the gravitational waves propagating at the same speed as the light, although they have a characteristic longitudinal polarization mode, besides others modes that are observer dependent. We also analyze the energy carried by the gravitational waves as well as how their emission affects the orbital period of a binary system. Observational data coming from Hulse and Taylor binary pulsar is then used to constraint the theory parameter.Comment: Revised version accepted for publication in EPJC; confrontation with pulsar observational data added; abstract slightly changed. arXiv admin note: substantial text overlap with arXiv:1607.0103

    Viscous Conformal Gauge Theories

    Get PDF
    We present the conformal behavior of the shear viscosity-to-entropy density ratio and the fermion-number diffusion coefficient within the perturbative regime of the conformal window for gauge-fermion theories

    Cosmology in GSG

    Full text link
    We describe what cosmology looks like in the context of the geometric theory of gravity (GSG) based on a single scalar field. There are two distinct classes of cosmological solutions. An interesting feature is the possibility of having a bounce without invoking exotic equations of state for the cosmic fluid. We also discuss cosmological perturbation and present the basis of structure formation by gravitational instability in the framework of the geometric scalar gravity.Comment: 12 pages, 5 figures, accepted for publication in Phys. Rev.

    More about scalar gravity

    Full text link
    We discuss a class of models for gravity based on a scalar field. The models include and generalize the old approach by Nordstr\"om which predated and in some way inspired General Relativity. The class include also a model that we have recently introduced and discussed in its cosmological aspects (GSG). We present here a complete characterisation of the Schwarschild geometry as a vacuum solution of GSG and sketch a discussion of the first Post-Newtonian approximation.Comment: 11 pages, 1 figure, accepted for publication in PR

    Geometric scalar theory of gravity

    Full text link
    We present a geometric scalar theory of gravity. Our proposal will be described using the "background field method" introduced by Gupta, Feynman and others as a field theory formulation of general relativity. We analyze previous criticisms against scalar gravity and show how the present proposal avoids these difficulties. This concerns not only the theoretical complaints but also those related to observations. In particular, we show that the widespread belief of the conjecture that the source of scalar gravity must be the trace of the energy-momentum tensor - which is one of the main difficulties to couple gravity with electromagnetic phenomenon in previous models - does not apply to our geometric scalar theory. Some consequences of the new scalar theory are explored.Comment: We did some modifications which do not change the content of the tex

    XPS analysis of Fe2O3-TiO2-Au nanocomposites prepared by a plasma-assisted route

    Get PDF
    Fe2O3 nanodeposits have been grown on fluorine-doped tin oxide (FTO) substrates by plasma enhanced-chemical vapor deposition (PE-CVD). Subsequently, the obtained systems have been functionalized through the sequential introduction of TiO2 and Au nanoparticles (NPs) by means of radio frequency (RF)-sputtering. The target nanocomposites have been specifically optimized in view of their ultimate functional application in solar-driven H2 generation. In the present study, our attention is focused on a detailed X-ray photoelectron spectroscopy (XPS) characterization of the surface composition for a representative Fe2O3-TiO2-Au specimen. In particular, this report provides a detailed discussion of the analyzed C 1s, O 1s, Fe 2p, Ti 2p, and Au 4f regions. The obtained results point to the formation of pure Fe2O3-TiO2-Au composites, with gold present only in its metallic state and each of the constituents maintaining its chemical identity
    • 

    corecore