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We present the conformal behavior of the shear viscosity-to-entropy density ratio and the fermion-number
diffusion coefficient within the perturbative regime of the conformal window for gauge-fermion theories.
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I. INTRODUCTION

Gauge theories constitute the backbone of the standard
model of particle interactions. Gauge theories exist in
several different phases that are naturally classified accord-
ing to the force measured between static sources.
Knowledge of the phase diagram proves crucial when
investigating extensions of the standard model both for
particle physics and cosmology. A special class of gauge
theories are the ones that are fundamental according to
Wilson [1,2], meaning that they possess a complete (in all
couplings) ultraviolet (UV) fixed point either of noninter-
acting (asymptotically free [3–7]) or of interacting nature
(asymptotically safe [8]). Complete asymptotically safe
quantum field theories were discovered only very recently
[9,10], widening the horizon of fundamental theories1 that
can be used for novel phenomenological applications [11]
beyond the traditional asymptotically free paradigm [3,4].
The thermal properties of completely asymptotically safe
field theories were elucidated in Ref. [12].
Here we focus our attention on asymptotically free gauge

theories featuring gauge and fermion degrees of freedom
that develop an infrared (IR) interacting fixed point. We
henceforth push forward our program to systematically
understand, in a rigorous manner, the dynamics of these
theories at zero [13–18] and nonzero matter density
[19,20], by analyzing their conformal viscous behavior
as a function of the number of flavors.2 Because of the

perturbative nature of the theories investigated here, along
the full energy range, our investigation of their viscous
properties is also much better controlled than for QCD-like
theories. This is so because at very high energies the theory
is noninteracting and at very low energies the theory
reaches an IR perturbative fixed point. Furthermore, the
value of the gauge coupling at the IR fixed point can be
made arbitrarily small by changing the number of flavors
and colors of the theory. This allows us to consistently
truncate the perturbative expansion within the range of
convergence of the theory.
We henceforth determine the conformal behavior, as a

function of the number of flavors, for the shear viscosity-
to-entropy density ratio and the fermion-number diffusion
coefficient. By adapting the results of Ref. [23] we learn
that, as we decrease the number of flavors below the
loss of asymptotic freedom, their IR fixed point values
decrease. Furthermore, for a given number of flavors
within the perturbative conformal window, both coeffi-
cients decrease with decreasing temperature (once we
multiply the diffusion coefficient by the temperature)
from their infinite value in the deep UV down to the
value at the IR fixed point. We represent the results for
three colors as a function of the number of flavors, but to
the order investigated here the results are similar for any
other fermion representation.
We organize this paper as follows. In Sec. II we shortly

review the theory, introduce the notation, and provide the
salient zero and nonzero temperature properties. This is
followed by the determination of the transport coefficients
in Sec. III. Here we comment on our findings and finally
conclude in Sec. IV.

II. REVIEW OF THE HOT CONFORMAL FREE
ENERGY DENSITY @ Oðg2Þ AND ENTROPY

DENSITY

Our starting point is a generic asymptotically free gauge
theory with Nf Dirac flavors transforming according to the
representation r of the underlying gauge group.

1A crucial property was unveiled in Ref. [9]; i.e., the Yukawa
interactions, mediated by the scalars, compensate for the loss of
asymptotic freedom due to the large number of gauged fermion
flavors and therefore cure the subsequent growth of the gauge
coupling. The further interplay of the gauge, Yukawa, and scalar
interactions ensures that all couplings reach a stable interactingUV
fixed point, allowing for a complete asymptotic safety scenario in
all couplings [9]. This is different from the complete asymptotic
freedom scenario [5–7] where all couplings vanish in the UV.

2Systematic analytic studies of the conformal window of
nonsupersymmetric field theories beyond perturbation theory
restarted in Refs. [21,22]. Here the reader will also find a
complete list of earlier references.
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The relevant group-normalization factors are

Tr½Ta
rTb

r � ¼ T½r�δab; Ta
rTa

r ¼ C2½r�1; ð1Þ

where Ta
r is the ath group generator in the representation r

and a ¼ 1;…; d½G�. We denote with d½r� the dimension of
the representation, and with G the adjoint representation.
The quantities T½r� and C2½r� are related via the identity
C2½r�d½r� ¼ T½r�d½G�. We summarize useful group theory
factors in Table I.
The β function up to four-loop order,

βðgÞ ¼ −
β0

ð4πÞ2 g
3 −

β1
ð4πÞ4 g

5 −
β2

ð4πÞ6 g
7

−
β3

ð4πÞ8 g
9 þOðg11Þ; ð2Þ

was computed in Ref. [24]. As is the case for the free
energy, the four-loop β function is also computed in the MS
scheme; thus no ambiguities in the scheme dependence
of the expressions arise. Only β0 and β1 are scheme
independent and read

β0 ¼
11

3
C2½G� −

4

3
T½r�Nf; ð3Þ

β1 ¼
34

3
C2
2½G� −

�
20

3
C2½G� þ 4C2½r�

�
T½r�Nf: ð4Þ

Asymptotic freedom is lost when the lowest-order coef-
ficient, β0, changes sign. This occurs for

NAF
f ¼ 11

4

C2½G�
T½r� : ð5Þ

For a given fermion representation, the second coefficient,
β1, is negative below and near this critical number of flavors
and an IR-stable fixed point develops, which is known as
the Banks-Zaks fixed point [25]. Such a theory displays
large-distance conformality. The value of the coupling at
the IR fixed point, g�, is such that βðg�Þ ¼ 0, and it is given
at next-to-leading order by

g2� ¼ −ð4πÞ2 β0
β1

: ð6Þ

The IR fixed point disappears, at two-loop level, when β1
changes sign. This occurs for

NLost
f ¼ 17C2½G�

10C2½G� þ 6C2½r�
C2½G�
T½r� : ð7Þ

The free energy density is known up to the order
g6 logð1=gÞ [26] but for this exploratory study it is
sufficient to stop at order g2, where it reads

f
π2T4

¼ −
d½G�
9

�
1

5
þ 7

20

d½r�
d½G�Nf

−
�
C2½G� þ

5

2
T½r�Nf

�
g2ðTÞ
ð4πÞ2

�
; ð8Þ

where T is the temperature of the theory and we traded
the renormalization scale by T. In the deep UV, i.e., at
temperatures sufficiently high that the physics is dominated
by the asymptotically free fixed point, the coupling
vanishes logarithmically and the UV free energy density
is the one of a free gas of gluons and fermions,

fUV

π2T4
¼ −

d½G�
9

�
1

5
þ 7

20

d½r�
d½G�Nf

�
: ð9Þ

This is the trivial conformal limit while the interacting
conformal free energy density in the deep IR is obtained by
replacing the coupling constant with the Banks-Zaks fixed
point value g� [20],

fIR

π2T4
¼ f�

π2T4

¼ −
d½G�
9

�
1

5
þ 7

20

d½r�
d½G�Nf

þ ðC2½G� þ 5
2
T½r�NfÞð11C2½G� − 4T½r�NfÞ

34C2
2½G� − ð20C2½G� þ 12C2½r�ÞT½r�Nf

�
:

We observe immediately that due to the conformal large-
distance nature of our theories the dependence of the free
energy density on the energy scale is only via the temper-
ature, which factors out leaving behind a numerical factor
containing information on the specific theory studied.
The entropy density s can be determined via its relation

with the free energy density,

s
4π2T3

¼ −
1

4π2T3

df
dT

¼ f̂ þ βðgÞ
4

∂f̂
∂g ; ð10Þ

with f ¼ −f̂ðgðTÞÞπ2T4. At fixed points, where the β
function vanishes,

TABLE I. Relevant group factors for the representations used
throughout this paper. However, a complete list of all the group
factors for any representation and the way to compute them is
available in Table II and the appendix of Ref. [22].

r TðrÞ C2ðrÞ dðrÞ
□ 1

2
N2−1
2N

N

G N N N2 − 1

Nþ2
2

ðN−1ÞðNþ2Þ
N

NðNþ1Þ
2

N−2
2

ðNþ1ÞðN−2Þ
N

NðN−1Þ
2
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sFP

4π2T3
¼ −

fFP

π2T4
: ð11Þ

Having at our disposal the precise expressions of both
the entropy and free energy density we can now move to
the transport coefficients that encode further important
dynamical properties of the theory.

III. FLAVOR AND TEMPERATURE DEPENDENCE
OF THE CONFORMAL SHEAR VISCOSITY AND
FERMION-NUMBER DIFFUSION COEFFICIENTS

We are now ready to unveil the dependence on the
number of flavors for relevant transport coefficients such as
the shear viscosity and fermion-number diffusion coeffi-
cient for several gauge theories at perturbatively trustable
interacting fixed points. We also analyze the temperature
dependence of the mentioned transport coefficients, once
the number of flavors and colors is fixed to some value in
the perturbative conformal window.
In order to determine the transport coefficients, the

authors of Refs. [23,27] used kinetic theory in which
coupled Boltzmann equations describe the evolution of
the phase-space density of distinct particle species. The
transport coefficients can be read off from the stress-energy
tensor of the theory, which in turn is determined once the
phase-space densities of all the particle species are known.
In Refs. [23,27] analytic expressions for the transport
coefficients are given, which approximately reproduce
the numerical results. The result for the shear viscosity,
in the next-to-leading-log approximation, is

η≃ 270d½G�ζð5Þ2
�
2

π

�
5

ðvTc−1vÞ T3

gðTÞ4 lnðAT=mDÞ
;

ð12Þ

where

c ¼ ðd½G�C2½G� þ Nfd½r�C2½r�Þ

×

�
d½G�C2½G� 0

0 7
4
Nfd½r�C2½r�

�

þ 9π2

128
Nfd½r�C2

2½r�d½G�
�

1 −1
−1 1

�
;

v ¼
�

d½G�
15
8
Nfd½r�

�
;

m2
D ¼ 1

3

�
C2½G� þ NfC2½r�

d½r�
d½G�

�
g2T2; ð13Þ

with mD being the Debye mass and A a numerical
coefficient that has a mild dependence on the number of
flavors and colors. The numerical values of A relevant for
the cases studied in this paper are reported in Table II.

Because of the overall T3 dependence of the shear
viscosity it is convenient to normalize it to the entropy
density. The so constructed ratio reads at a generic fixed point

ηFP

sFP
¼ AðNf; NÞ

g4� ln½BðNf; NÞg−1� � ; ð14Þ

with AðNf; NÞ and BðNf; NÞ calculable definite positive
and smooth functions of the number of colors and flavors,
with g� ¼ g�ðNf; NÞ being the value of the coupling at the
fixed point.
As expected at noninteracting fixed points, such as the

UV fixed point, the ratio diverges. On the other hand at the
interacting IR fixed point the ratio approaches a finite value
controlled by a small nonvanishing δ ¼ NAF

f − Nf.
In the left panel of Fig. 1 we plot ðη=sÞIR as a function of

the number of flavors, for fermions in the fundamental
representation with N ¼ 3. When decreasing the number of
flavors below the asymptotically free boundary, where the
shear viscosity diverges, we observe a dramatic decrease
while still remaining much above the bound η=s ≥ 1=ð4πÞ
conjectured by AdS/CFT [29]. It is natural to expect that, as
we further decrease the number of flavors, the IR ratio
further decreases to reach a minimum value at the lower
boundary of the conformal window. Below this critical
number of flavors we expect the onset of chiral symmetry
breaking and the theory in the deep IR becomes a theory of
noninteracting pions with again a divergent value of this
quantity.
In the right panel of Fig. 1 we present the temperature

dependence of the shear viscosity over the entropy density
for several values of Nf. The quantity η=s depends on the
temperature over a reference scale Λ via the gauge
coupling. The reference energy scale is chosen to be the
one for which the β function displays a minimum occurring
between the trivial UV and interacting IR fixed points.
The energy scale Λ is therefore defined by

g2ðT ¼ ΛÞ ¼ 3

5
g2�: ð15Þ

For Nf ¼ 6, for which the theory does not display an IR
perturbative fixed point, Λ is taken to be the scale at which

TABLE II. Values of the coefficients A and B [28] appearing in
the next-to-leading-log expressions of the shear viscosity and the
fermion-number diffusion coefficient, for N ¼ 3 and different
values of Nf.

Nf A B

6 2.918 3.064
14 2.878 3.135
15 2.873 3.172
16 2.869 3.176
16.25 2.867 3.177
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the one-loop gauge coupling diverges as a function of the
temperature. The ratio η=s decreases as we decrease the
temperature for different values of the number of flavors
within the conformal window. However for Nf ¼ 15 we
observe that a minimum develops around T ¼ Λ. This
happens because for this value of Nf there is a temperature
for which 4 lnðATmD

Þ ¼ 1, which corresponds to a minimum

for the g−4 ln ðATmD
Þ−1 function.

We now move our attention to another relevant transport
quantity, the fermion-number diffusion coefficient. The
diffusion coefficient for the net number density of the
fermion flavor a is given in Ref. [23] and reads, at the next-
to-leading-log level

Da ¼
65ζð3Þ2
π3C2½ra�

�Xff̄h
b

T½rb�λb þ
3π2

8
C2½ra�

�
−1

×
T−1

g4 lnðBT=mDÞ
; ð16Þ

where the sum extends over all particle species b that the
fermion species a can scatter with in the process ab → ab,

mediated by a gauge boson. Particles and antiparticles are
counted separately, and the same goes for the helicity states:
this means that we have to count a factor of 4 for every Dirac
fermion, and a factor of 2 for gauge bosons. Furthermore,
λb ¼ 1 if the particleb is a fermion, and λb ¼ 2 if it is a boson.
B is a numerical coefficient, whose values relevant for the
cases studied in this paper are reported in Table II.
We can specialize Eq. (16) to our theory with SUðNÞ

gauge symmetry and Nf fermions, all in the same repre-
sentation r. We obtain

D ¼ 65ζð3Þ2
π3C2½r�

�
4NfT½r� þ 4N þ 3π2

8
C2½r�

�
−1

×
T−1

g4 lnðBT=mDÞ
: ð17Þ

At very low energies, where the coupling is frozen at the
fixed point value g�, the dimensionless quantity ðTDÞIR can
be plotted as a function of the number of flavors. This is
represented in the left panel of Fig. 2, for the case of
fermions in the fundamental representation and N ¼ 3.

FIG. 1. Left panel: η=s evaluated at the IR fixed point, as a function of the number of flavors, for fermions in the fundamental representation
withN ¼ 3 colors. Right panel: η=s as a function of the temperature over the RenormalizationGroup (RG) scaleΛ for different values ofNf

in the conformal window and one outside corresponding toNf ¼ 6, forN ¼ 3 colors. AlthoughNf ¼ 14 still displays a potential IR fixed
point the IR dynamics of η=s cannot be accessed perturbatively. The horizontal line at the bottom is the conjectured AdS/CFT bound.

FIG. 2. Left panel: ðTDÞIR as a function of the number of flavors, for the case of fermions in the fundamental representation and
N ¼ 3. Right panel: TD as a function of the temperature, for different values of Nf and N ¼ 3.
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As for the case of the shear viscosity-to-entropy density
ratio, we observe that ðTDÞIR diverges as g� approaches the
origin when increasing the number of flavors towards the
asymptotic freedom boundary. As for the shear viscosity-
to-entropy density ratio, in the right panel of Fig. 2 we also
plot TD as a function of temperature for different values
of the number of flavors in the conformal window and for
Nf ¼ 6.
One last comment has to be made about the applicability

of the next-to-leading-log approximation for the transport
coefficients in the conformal window. The presence of a
perturbative IR fixed point allowed us to apply the next-to-
leading-log results in the whole energy range, from the UV,
where the theory is asymptotically free, down to the IR.
However, particular care has to be taken to decide whether
the values obtained in the deep IR can be trusted. We chose
to illustrate the results for the case of three colors and
for different values of the number of flavors within the
perturbative conformal window.Nf ¼ 15 is the last value at
which we could observe the expected behavior of the
transport coefficients as a function of the temperature, i.e.,
to run from a divergent value in the UV down to a constant
finite value in the IR. For Nf ¼ 14 the next-to-leading-log
expression for the transport coefficients does not stabilize at
a finite value in the IR, but instead diverges at low energies,
showing that the next-to-leading-log approximation cannot
be trusted any longer. In fact, following Ref. [27] one can
argue that the next-to-leading-log result is very close to the
full leading-order result (and therefore trustable) as long as
mD=T ≤ 1. This requirement is satisfied in our analysis
provided Nf is larger than 16.25, de facto further limiting
the window of applicability of the perturbative analysis.
The values ofmD=T at the IR fixed point for N ¼ 3 and the
values of Nf within the conformal window that have been
considered in this paper are reported in Table III.

IV. CONCLUSIONS

We determined the shear viscosity-to-entropy density
ratio and the fermion-number diffusion coefficient within
the perturbative regime of the conformal window for
gauge-fermion theories. Our formalism is valid for any
fermionic matter representation, while the physical results,
which are expected to hold generically, were elucidated via
a three-color gauge theory as functions of the number of

flavors in the fundamental representation. We observed that
when the number of flavors decreases from the value at the
loss of asymptotic freedom both the shear viscosity-to-
entropy density ratio and the fermion-number diffusion
coefficient measured at the IR fixed point dramatically
decrease. Furthermore, for a given number of flavors within
the perturbative conformal window both coefficients
decrease (albeit not monotonically for Nf ¼ 15) with the
temperature from their divergent value in the UV down to
the value at the IR fixed point. More specifically we
discovered that down to 15 flavors the next-to-leading-
log results exhibit the expected behavior of stabilizing at a
constant finite value in the IR. For Nf ¼ 14 the next-to-
leading-log results diverge at low energy, showing that the
next-to-leading-log approximation cannot be trusted even
qualitatively. In fact, following Refs. [23,27] one can
consider a more restrictive constraint for the next-to-
leading-log approximation to be quantitatively accurate.
The latter requiresmD=T ≤ 1which, in our analysis, is valid
for Nf larger than 16.25.
The ratio η=s at the IR fixed point drops significantlywhen

going from 16.25 to 15 flavors showing that amodest change
in the number of flavors dramatically affects the dynamics of
the theory encoded in the transport coefficients.Higher-order
corrections are needed to reach lower values ofNf within the
conformal window for the transport coefficients. In contrast,
at zero temperature one observes that perturbation theory
allows us to go quite low in the number of flavors within the
conformal window [14–17]. Although unproven it is rea-
sonable to expect that the minimum of η=s as a function of
temperature in QCD lies below the lowest value of η=s
obtained at the bottom of the conformal window, and
therefore lower than the one obtained near 15 flavors.
To conclude, the salient results of our analysis are as

follows:
(i) We provided theoretically relevant examples in

which the perturbative estimate of the transport
coefficients can be used along the entire RG flow
from the UV to the IR without losing their validity.

(ii) We determined the range of applicability of those
results within the conformal window of QCD and
QCD-like theories.

Our computations delineate and extend the range of
applicability of the perturbative transport coefficients to
the relevant subject of the conformal window in QCD and
QCD-like theories. The work serves as a stepping stone for
future studies in this direction.
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