63 research outputs found

    Structure-Activity Relationships of Synthetic Analogs of Jasmonic Acid and Coronatine on Induction of Benzophenanthridine Alkaloid Accumulation in Eschscholzia californica Cell Cultures

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.A facile test system based on the accumulation of benzo[c]phenanthridine alkaloids in Eschscholzia californica cell suspension culture (an indicator of defense gene activation) has been used to analyze a series of synthetic compounds for elicitor-like activity. Of the 200 jasmonic acid and coronatine analogs tested with this system, representative results obtained with 49 of them are presented here. The following can be summarized concerning structure-activity relationships: there is a large degree of plasticity allowed at the C-3 of jasmonic acid in the activation of defense genes. The carbonyl moiety is not strictly required, but exocyclic double bond character appears necessary. The pentenyl side chain at C-2 cannot tolerate bulky groups at the terminal carbon and still be biologically active. Substitutions to the C-1′ position are tolerated if they can potentially undergo β-oxidation. Either an alkanoic acid or methyl ester is required at C-1, or a side chain that can be shortened by β-oxidation or by peptidase hydrolysis. Coronatine and various derivatives thereof are not as effective as jasmonic acid, and derivatives in inducing benzo[c]phenanthridine alkaloid accumulation. Jasmonic acid rather than the octadecanoic precursors is therefore considered to be a likely signal transducer of defense gene activation in planta

    Genetic Diversity and Population Structure of a Camelina sativa Spring Panel

    Get PDF
    There is a need to explore renewable alternatives (e.g., biofuels) that can produce energy sources to help reduce the reliance on fossil oils. In addition, the consumption of fossil oils adversely affects the environment and human health via the generation of waste water, greenhouse gases, and waste solids. Camelina sativa, originated from southeastern Europe and southwestern Asia, is being re-embraced as an industrial oilseed crop due to its high seed oil content (36–47%) and high unsaturated fatty acid composition (\u3e90%), which are suitable for jet fuel, biodiesel, high-value lubricants and animal feed. C. sativa’s agronomic advantages include short time to maturation, low water and nutrient requirements, adaptability to adverse environmental conditions and resistance to common pests and pathogens. These characteristics make it an ideal crop for sustainable agricultural systems and regions of marginal land. However, the lack of genetic and genomic resources has slowed the enhancement of this emerging oilseed crop and exploration of its full agronomic and breeding potential. Here, a core of 213 spring C. sativa accessions was collected and genotyped. The genotypic data was used to characterize genetic diversity and population structure to infer how natural selection and plant breeding may have affected the formation and differentiation within the C. sativa natural populations, and how the genetic diversity of this species can be used in future breeding efforts. A total of 6,192 high-quality single nucleotide polymorphisms (SNPs) were identified using genotypingby- sequencing (GBS) technology. The average polymorphism information content (PIC) value of 0.29 indicate moderate genetic diversity for the C. sativa spring panel evaluated in this report. Population structure and principal coordinates analyses (PCoA) based on SNPs revealed two distinct subpopulations. Sub-population 1 (POP1) contains accessions that mainly originated from Germany while the majority of POP2 accessions (\u3e75%) were collected from Eastern Europe. Analysis of molecular variance (AMOVA) identified 4% variance among and 96% variance within subpopulations, indicating a hig

    Genetic Diversity and Population Structure of a Camelina sativa Spring Panel

    Get PDF
    There is a need to explore renewable alternatives (e.g., biofuels) that can produce energy sources to help reduce the reliance on fossil oils. In addition, the consumption of fossil oils adversely affects the environment and human health via the generation of waste water, greenhouse gases, and waste solids. Camelina sativa, originated from southeastern Europe and southwestern Asia, is being re-embraced as an industrial oilseed crop due to its high seed oil content (36–47%) and high unsaturated fatty acid composition (>90%), which are suitable for jet fuel, biodiesel, high-value lubricants and animal feed. C. sativa’s agronomic advantages include short time to maturation, low water and nutrient requirements, adaptability to adverse environmental conditions and resistance to common pests and pathogens. These characteristics make it an ideal crop for sustainable agricultural systems and regions of marginal land. However, the lack of genetic and genomic resources has slowed the enhancement of this emerging oilseed crop and exploration of its full agronomic and breeding potential. Here, a core of 213 spring C. sativa accessions was collected and genotyped. The genotypic data was used to characterize genetic diversity and population structure to infer how natural selection and plant breeding may have affected the formation and differentiation within the C. sativa natural populations, and how the genetic diversity of this species can be used in future breeding efforts. A total of 6,192 high-quality single nucleotide polymorphisms (SNPs) were identified using genotyping-by-sequencing (GBS) technology. The average polymorphism information content (PIC) value of 0.29 indicate moderate genetic diversity for the C. sativa spring panel evaluated in this report. Population structure and principal coordinates analyses (PCoA) based on SNPs revealed two distinct subpopulations. Sub-population 1 (POP1) contains accessions that mainly originated from Germany while the majority of POP2 accessions (>75%) were collected from Eastern Europe. Analysis of molecular variance (AMOVA) identified 4% variance among and 96% variance within subpopulations, indicating a high gene exchange (or low genetic differentiation) between the two subpopulations. These findings provide important information for future allele/gene identification using genome-wide association studies (GWAS) and marker-assisted selection (MAS) to enhance genetic gain in C. sativa breeding programs

    A genome triplication associated with early diversification of the core eudicots

    Get PDF
    Background: Although it is agreed that a major polyploidy event, gamma, occurred within the eudicots, the phylogenetic placement of the event remains unclear. Results: To determine when this polyploidization occurred relative to speciation events in angiosperm history, we employed a phylogenomic approach to investigate the timing of gene set duplications located on syntenic gamma blocks. We populated 769 putative gene families with large sets of homologs obtained from public transcriptomes of basal angiosperms, magnoliids, asterids, and more than 91.8 gigabases of new next-generation transcriptome sequences of non-grass monocots and basal eudicots. The overwhelming majority (95%) of well-resolved gamma duplications was placed before the separation of rosids and asterids and after the split of monocots and eudicots, providing strong evidence that the gamma polyploidy event occurred early in eudicot evolution. Further, the majority of gene duplications was placed after the divergence of the Ranunculales and core eudicots, indicating that the gamma appears to be restricted to core eudicots. Molecular dating estimates indicate that the duplication events were intensely concentrated around 117 million years ago. Conclusions: The rapid radiation of core eudicot lineages that gave rise to nearly 75% of angiosperm species appears to have occurred coincidentally or shortly following the gamma triplication event. Reconciliation of gene trees with a species phylogeny can elucidate the timing of major events in genome evolution, even when genome sequences are only available for a subset of species represented in the gene trees. Comprehensive transcriptome datasets are valuable complements to genome sequences for high-resolution phylogenomic analysis

    Data access for the 1,000 Plants (1KP) project

    Get PDF
    © 2014 Matasci et al.; licensee BioMed Central Ltd. The 1,000 plants (1KP) project is an international multi-disciplinary consortium that has generated transcriptome data from over 1,000 plant species, with exemplars for all of the major lineages across the Viridiplantae (green plants) clade. Here, we describe how to access the data used in a phylogenomics analysis of the first 85 species, and how to visualize our gene and species trees. Users can develop computational pipelines to analyse these data, in conjunction with data of their own that they can upload. Computationally estimated protein-protein interactions and biochemical pathways can be visualized at another site. Finally, we comment on our future plans and how they fit within this scalable system for the dissemination, visualization, and analysis of large multi-species data sets

    Phylotranscriptomic analysis of the origin and early diversification of land plants

    Get PDF
    Reconstructing the origin and evolution of land plants and their algal relatives is a fundamental problem in plant phylogenetics, and is essential for understanding how critical adaptations arose, including the embryo, vascular tissue, seeds, and flowers. Despite advances inmolecular systematics, some hypotheses of relationships remain weakly resolved. Inferring deep phylogenies with bouts of rapid diversification can be problematic; however, genome-scale data should significantly increase the number of informative characters for analyses. Recent phylogenomic reconstructions focused on the major divergences of plants have resulted in promising but inconsistent results. One limitation is sparse taxon sampling, likely resulting from the difficulty and cost of data generation. To address this limitation, transcriptome data for 92 streptophyte taxa were generated and analyzed along with 11 published plant genome sequences. Phylogenetic reconstructions were conducted using up to 852 nuclear genes and 1,701,170 aligned sites. Sixty-nine analyses were performed to test the robustness of phylogenetic inferences to permutations of the datamatrix or to phylogeneticmethod, including supermatrix, supertree, and coalescent-based approaches, maximumlikelihood and Bayesian methods, partitioned and unpartitioned analyses, and amino acid versus DNA alignments. Among other results, we find robust support for a sister-group relationship between land plants and one group of streptophyte green algae, the Zygnematophyceae. Strong and robust support for a clade comprising liverworts and mosses is inconsistent with a widely accepted view of early land plant evolution, and suggests that phylogenetic hypotheses used to understand the evolution of fundamental plant traits should be reevaluated

    Kutchan Proposal 2009

    No full text

    Kutchan Proposal 2009

    No full text
    corecore