8 research outputs found

    Identification and expression pattern analysis of the OsSnRK2 gene family in rice

    Get PDF
    Sucrose non-fermenting-1-related protein kinase 2 (SnRK2) is a class of plant-specific serine/threonine (Ser/Thr) protein kinase that plays an important role in rice stress tolerance, growth and development. However, systematic bioinformatics and expression pattern analysis have not been reported. In the current study, ten OsSnRK2 genes were identified in the rice genome and located on 7 chromosomes, which can be classified into three subfamilies (I, II, and III). Many cis-regulatory elements were identified in the promoter region of OsSnRK2 genes, including hormone response elements, defense and stress responsive elements, indicating that the OsSnRK2 family may play a crucial role in response to hormonal and abiotic stress. Quantitative tissue analysis showed that OsSnRK2 genes expressed in all tissues of rice, but the expression abundance varied from different tissues and showed varietal variability. In addition, expression pattern of OsSnRK2 were analyzed under abiotic stress (salt, drought, salt and drought) and showed obvious difference in diverse abiotic stress. In general, these results provide useful information for understanding the OsSnRK2 gene family and analyzing its functions in rice in response to ABA, salt and drought stress, especially salt-drought combined stress

    Genome-Wide Identification of the HMA Gene Family and Expression Analysis under Cd Stress in Barley

    No full text
    In recent years, cadmium (Cd) pollution in soil has increased with increasing industrial activities, which has restricted crop growth and agricultural development. The heavy metal ATPase (HMA) gene family contributes to heavy metal stress resistance in plants. In this study, 21 HMA genes (HvHMAs) were identified in barley (Hordeumvulgare L., Hv) using bioinformatics methods. Based on phylogenetic analysis and domain distribution, barley HMA genes were divided into five groups (A–E), and complete analyses were performed in terms of physicochemical properties, structural characteristics, conserved domains, and chromosome localization. The expression pattern analysis showed that most HvHMA genes were expressed in barley and exhibited tissue specificity. According to the fragments per kilobase of exon per million fragments values in shoots from seedlings at the 10 cm shoot stage (LEA) and phylogenetic analysis, five HvHMA genes were selected for expression analysis under Cd stress. Among the five HvHMA genes, three (HvHMA1, HvHMA3, and HvHMA4) were upregulated and two (HvHMA2 and HvHMA6) were downregulated following Cd treatments. This study serves as a foundation for clarifying the functions of HvHMA proteins in the heavy metal stress resistance of barley

    Effects of salicylic acid on growth, physiology, and gene expression in rice seedlings under salt and drought stress

    No full text
    Salt and drought stress has been an important factor limiting agricultural production, and SA is an important phenolic involved in stress response, but the function of SA in response to dual salt and drought stress in rice is not clear. In this study, the effects and mechanisms of exogenous SA-triggered in rice adaptation to dual salt and drought stress were investigated by detecting physiological and biochemical indexes and the expression of salt and drought tolerance genes. The results showed that the application of SA could significantly increase the antioxidant enzyme activities of rice seedlings under salt and drought stress, thereby reducing the contents of rice H2O2 and MDA and maintaining the growth of rice seedlings. Moreover, the expression of genes involved in the response of abiotic stress, such as OsDREB2A, OsSAPK8, OsSAPK10 and OsMYB2, were up-regulated under salt and drought treatment, and SA application could further enhance the expression of those genes like OsDREB2A and OsSAPK8, suggesting that SA might regulate antioxidant enzyme activity via inducing the expression of salt and drought tolerance genes and enhancing the salt and drought tolerance of rice. The results will enrich the knowledge of the function of SA and provide a reference for studying the mechanism of SA in the salt and drought resistance of rice, and breeding new rice germplasm with improved salt and drought resistance
    corecore