4 research outputs found

    Fractionation of lead in soil by isotopic dilution and sequential extraction

    Get PDF
    ‘Reactivity’ or ‘lability’ of lead is difficult to measure using traditional methods. We investigated the use of isotopic dilution with 204Pb to determine metal reactivity in four soils historically contaminated with contrasting sources of Pb, including (i) petrol-derived Pb, (ii) Pb/Zn minespoil, (iii) long-term sewage sludge application and (iv) 19th century urban waste disposal; total soil Pb concentrations ranged from 217 to 13 600 mg kg–1. A post-spike equilibration period of 3 days and suspension in 5.0 × 10–4 M ethylenediaminetetraacetic acid provided reasonably robust conditions for measuring isotopically exchangeable Pb. However, in acidic organic soils a dilute Ca(NO3)2 electrolyte may be preferable to avoid mobilisation of ‘non-labile’ Pb. Results showed that the reactive pool of soil Pb can be a large proportion of the total soil lead content but varies with the original Pb source. A comparison of isotopic exchangeability with the results of a sequential extraction procedure showed that (isotopically) ‘non-labile’ Pb may be broadly equated with ‘residual’ Pb in organic soils. However, in mineral soils the ‘carbonate’ and ‘oxide-bound’ Pb fractions included non-labile forms of Pb. The individual isotopic signatures of labile and non-labile Pb pools suggested that, despite prolonged contact with soil, differences between the lability of the original contaminant and the native soil Pb may remain

    Use of Isotope Dilution Method To Predict Bioavailability of Organic Pollutants in Historically Contaminated Sediments

    No full text
    [Image: see text] Many cases of severe environmental contamination arise from historical episodes, where recalcitrant contaminants have resided in the environment for a prolonged time, leading to potentially decreased bioavailability. Use of bioavailable concentrations over bulk chemical levels improves risk assessment and may play a critical role in determining the need for remediation or assessing the effectiveness of risk mitigation operations. In this study, we applied the principle of isotope dilution to quantify bioaccessibility of legacy contaminants DDT and PCBs in marine sediments from a Superfund site. After addition of (13)C or deuterated analogues to a sediment sample, the isotope dilution reached a steady state within 24 h of mixing. At the steady state, the accessible fraction (E) derived by the isotope dilution method (IDM) ranged from 0.28 to 0.89 and was substantially smaller than 1 for most compounds, indicating reduced availability of the extensively aged residues. A strong linear relationship (R(2) = 0.86) was found between E and the sum of rapid (F(r)) and slow (F(s)) desorption fractions determined by sequential Tenax desorption. The IDM-derived accessible concentration (C(e)) was further shown to correlate closely with tissue residue in the marine benthic polychaete Neanthes arenaceodentata exposed in the same sediments. As shown in this study, the IDM approach involves only a few simple steps and may be readily adopted in laboratories equipped with mass spectrometers. This novel method is expected to be especially useful for historically contaminated sediments or soils, for which contaminant bioavailability may have changed significantly due to aging and other sequestration processes

    Prediction of the edaphic factors influence upon the copper and cobalt accumulation in two metallophytes using copper and cobalt speciation in soils.

    No full text
    Background and aims: Among the unique flora on copper and cobalt rich soils, some species are able to hyperaccumulate the Cu and Co in their shoots, however, the unexplained high variations of Cu and Co concentrations in shoots have been highlighted. A good comprehension of the Cu and Co accumulation variations would go through a characterization of the Cu and Co speciation in soils. We examined the covariations of Cu and Co speciation in soils and Cu and Co concentrations in plants. Methods: Plant samples of two species and soil samples (n = 146) were collected in seven pedogeochemically contrasted sites. Cu and Co speciation in soils was modeled by WHAM 6.0. Results: Variation in copper accumulation in plant shoots were mostly influenced by Cu adsorbed by the Mn and Fe oxides fractions, whereas Co accumulation variations were strongly influenced by Co free and Co adsorbed by the OM and Fe fractions. Conclusions: Availability of Cu and Co seems to be species-specific and is not explained only by the free Cu and Co content in the soil solution, but also strongly by the part linked to colloidal fractions. Availability of Cu and Co is a complex mechanism, closely related to all the biogeochemical processes which occur in the rhizosphere. Future work should perform experiments in controlled conditions to examine the soil parameters that influence the Cu and Co availability. © 2014 Springer International Publishing Switzerland.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore