34 research outputs found

    Introgression of bacterial blight (BB) resistance genes Xa7 and Xa21 into popular restorer line and their hybrids by molecular marker-assisted backcross (MABC) selection scheme

    Get PDF
    Yihui1577 is an elite restorer line widely used in hybrid rice production in China, however, both the restorer and their derived hybrids are susceptible to bacterial blight (BB) caused by Xathomonas oryzae pv. oryzae (Xoo). In order to overcome this problem, we had introgressed two resistant genes Xa7 and Xa21 into Yihui1577 by marker-assisted backcross (MABC) with foreground selection scheme to speed up the process. Six breeding lines with different BB resistance genes: HH1202 (Xa7), HH1203 (Xa7), HH1204 (Xa21), HH1205 (Xa21), HH1206 (Xa7+Xa21) and HH1207 (Xa7+Xa21) were selected and crossed with four CMS and one TGMS lines. Seven most virulent and prevalent Xoo strains (PXO61, PXO99, ZHE173, GD1358, FuJ, YN24 and HeN11) from the Philippines and different provinces of China were inoculated for evaluating the BB-resistance of the selected lines and their derived hybrids. The results reveal that the two lines and their derived hybrids with single resistance gene Xa7 were resistant against six of the seven Xoo strains, except for PXO99. The lines with single resistance gene Xa21 were only susceptible to the Xoo strain FuJ, but some of their derived hybrids were susceptible to the Xoo strains FuJ and GD1358. Interestingly, the pyramiding lines carrying the two resistance genes Xa7 and Xa21 and also their derived hybrids were resistant against all the seven Xoo strains. The data of agronomic and grain quality characteristics demonstrated that the selected lines were similar to that of the recurrent parent Yihui1577. Corrective measures taken by way of introgression of BB-resistance genes: Xa7 and Xa21 into the popular restorer line, Yihui1577 through MABC approach for enhancing the BB-resistance level was effective and timely.Keywords: Bacterial blight, resistance gene, Xa7 and Xa21, MABC, inoculation and reaction, agronomic traits, grain qualit

    QTL Mapping of Combining Ability and Heterosis of Agronomic Traits in Rice Backcross Recombinant Inbred Lines and Hybrid Crosses

    Get PDF
    BACKGROUND: Combining ability effects are very effective genetic parameters in deciding the next phase of breeding programs. Although some breeding strategies on the basis of evaluating combining ability have been utilized extensively in hybrid breeding, little is known about the genetic basis of combining ability. Combining ability is a complex trait that is controlled by polygenes. With the advent and development of molecular markers, it is feasible to evaluate the genetic bases of combining ability and heterosis of elite rice hybrids through QTL analysis. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we first developed a QTL-mapping method for dissecting combining ability and heterosis of agronomic traits. With three testcross populations and a BCRIL population in rice, biometric and QTL analyses were conducted for ten agronomic traits. The significance of general combining ability and special combining ability for most of the traits indicated the importance of both additive and non-additive effects on expression levels. A large number of additive effect QTLs associated with performance per se of BCRIL and general combining ability, and dominant effect QTLs associated with special combining ability and heterosis were identified for the ten traits. CONCLUSIONS/SIGNIFICANCE: The combining ability of agronomic traits could be analyzed by the QTL mapping method. The characteristics revealed by the QTLs for combining ability of agronomic traits were similar with those by multitudinous QTLs for agronomic traits with performance per se of BCRIL. Several QTLs (1-6 in this study) were identified for each trait for combining ability. It demonstrated that some of the QTLs were pleiotropic or linked tightly with each other. The identification of QTLs responsible for combining ability and heterosis in the present study provides valuable information for dissecting genetic basis of combining ability

    The Rice HGW Gene Encodes a Ubiquitin-Associated (UBA) Domain Protein That Regulates Heading Date and Grain Weight

    Get PDF
    Heading date and grain weight are two determining agronomic traits of crop yield. To date, molecular factors controlling both heading date and grain weight have not been identified. Here we report the isolation of a hemizygous mutation, heading and grain weight (hgw), which delays heading and reduces grain weight in rice. Analysis of hgw mutant phenotypes indicate that the hemizygous hgw mutation decreases latitudinal cell number in the lemma and palea, both composing the spikelet hull that is known to determine the size and shape of brown grain. Molecular cloning and characterization of the HGW gene showed that it encodes a novel plant-specific ubiquitin-associated (UBA) domain protein localized in the cytoplasm and nucleus, and functions as a key upstream regulator to promote expressions of heading date- and grain weight-related genes. Moreover, co-expression analysis in rice and Arabidopsis indicated that HGW and its Arabidopsis homolog are co-expressed with genes encoding various components of ubiquitination machinery, implying a fundamental role for the ubiquitination pathway in heading date and grain weight control

    Accelerated molecular breeding of a novel P/TGMS line with broad-spectrum resistance to rice blast and bacterial blight in two-line hybrid rice

    No full text
    Abstract Background Breeding two-line hybrid rice with disease resistance is an effective approach to stabilize rice yield in commercial rice production of China. Results We improved the blast and bacterial blight resistance of Guangzhan63-4S, an elite photoperiod- and thermo-sensitive male sterile (P/TGMS) line widely used in two-line hybrid rice, by introducing the R genes Pi2 and Xa7 conferring resistance to rice blast and bacterial blight, respectively. Through the backcrossing and gene pyramiding breeding coupled with molecular marker-assisted selection, a new P/TGMS line Hua1228S carrying Pi2, Xa7, and tms5 was developed. Based on 200,000 SNP markers by next-generation sequencing, Hua1228S covered 87.6% of the recurrent genome, as well as 4.5% of the donor genome from VE6219 and 7.9% from YR7029–39. When infected with seven tested Xanthomonas oryzae pv. oryzae strains, Hua1228S conferred high resistance (0 level) to six bacterial blight strains. Moreover, Hua1228S showed broad-spectrum resistance to rice blast isolates with a high resistance frequency of 90.91%. High levels of resistance to leaf blast and neck blast were observed under heavy disease pressure in natural field. Importantly, Hua1228S showed identical fertility-sterility alteration pattern to Guangzhan63-4S. Thus, two hybrid combinations Hua Liangyou 2821 and Hua Liangyou 284 derived from Hua1228S exhibited enhanced resistance and higher yield compared with the control variety Feng Liangyou 4. Conclusions These results indicate that Hua1228S has tremendous potentiality to increase and stabilize the rice yield, through the introgression of two R genes by marker-assisted selection strategy

    Co-overexpression of the Constitutively Active Form of OsbZIP46 and ABA-Activated Protein Kinase SAPK6 Improves Drought and Temperature Stress Resistance in Rice

    No full text
    Drought is one of the major abiotic stresses threatening rice (Oryza sativa) production worldwide. Drought resistance is controlled by multiple genes, and therefore, a multi-gene genetic engineering strategy is theoretically useful for improving drought resistance. However, the experimental evidence for such a strategy is still lacking. In this study, a few drought-responsive genes from rice were assembled by a multiple-round site-specific assembly system, and the constructs were introduced into the rice cultivar KY131 via Agrobacterium-mediated transformation. The transgenic lines of the multi-gene and corresponding single-gene constructs were pre-evaluated for drought resistance. We found that the co-overexpression of two genes, encoding a constitutively active form of a bZIP transcription factor (OsbZIP46CA1) and a protein kinase (SAPK6) involved in the abscisic acid signaling pathway, showed significantly enhanced drought resistance compared with the single-gene transgenic lines and the negative transgenic plants. Single-copy lines of this bi-gene combination (named XL22) and the corresponding single-gene lines were further evaluated for drought resistance in the field using agronomical traits. The results showed that XL22 exhibited greater yield, biomass, spikelet number, and grain number under moderate drought stress conditions. The seedling survival rate of XL22 and the single-gene overexpressors after drought stress treatment also supported the drought resistance results. Furthermore, expression profiling by RNA-Seq revealed that many genes involved in the stress response were specifically up-regulated in the drought-treated XL22 lines and some of the stress-related genes activated in CA1-OE and SAPK6-OE were distinct, which could partially explain the different performances of these lines with respect to drought resistance. In addition, the XL22 seedlings showed improved tolerance to heat and cold stresses. Our results demonstrate that the multi-gene assembly in an appropriate combination may be a promising approach in the genetic improvement of drought resistance

    qRT-PCR expression analysis of heading- and grain weight-related genes in WT and <i>hgw</i> mutant.

    No full text
    <p>(A) to (D). Expression of heading-related genes including <i>Ehd1</i> (A), <i>Hd1</i> (B), <i>Hd3a</i> (C) <i>and OsGI</i> (D) in panicles collected from 3 time points. 1: 11:00, 2: 16:00 and 3: 20:00. (E). Expression of grain weight-related genes including <i>GIF1</i>, <i>GW2</i>, <i>GW5</i> and <i>GS3</i> in panicles of WT and <i>hgw</i> mutant. The transcript levels of examined genes were normalized to the <i>UBQ1</i> expression levels. All values are based on at least three biological and three technical repeats and presented as means ± SE (n≥3).</p
    corecore