13,903 research outputs found

    Structural assessment of a space station solar dynamic heat receiver thermal energy storage canister

    Get PDF
    The structural performance of a space station thermal energy storage (TES) canister subject to orbital solar flux variation and engine cold start up operating conditions was assessed. The impact of working fluid temperature and salt-void distribution on the canister structure are assessed. Both analytical and experimental studies were conducted to determine the temperature distribution of the canister. Subsequent finite element structural analyses of the canister were performed using both analytically and experimentally obtained temperatures. The Arrhenius creep law was incorporated into the procedure, using secondary creep data for the canister material, Haynes 188 alloy. The predicted cyclic creep strain accumulations at the hot spot were used to assess the structural performance of the canister. In addition, the structural performance of the canister based on the analytically determined temperature was compared with that based on the experimentally measured temperature data

    Perspectives of healthcare providers on the nutritional management of patients on haemodialysis in Australia: An interview study

    Get PDF
    Objective To describe the perspectives of healthcare providers on the nutritional management of patients on haemodialysis, which may inform strategies for improving patient-centred nutritional care. Design Face-to-face semistructured interviews were conducted until data saturation, and thematic analysis based on principles of grounded theory. Setting 21 haemodialysis centres across Australia. Participants 42 haemodialysis clinicians (nephrologists and nephrology trainees (15), nurses (12) and dietitians (15)) were purposively sampled to obtain a range of demographic characteristics and clinical experiences. Results Six themes were identified: responding to changing clinical status (individualising strategies to patient needs, prioritising acute events, adapting guidelines), integrating patient circumstances (assimilating life priorities, access and affordability), delineating specialty roles in collaborative structures (shared and cohesive care, pivotal role of dietary expertise, facilitating access to nutritional care, perpetuating conflicting advice and patient confusion, devaluing nutritional specialty), empowerment for behaviour change (enabling comprehension of complexities, building autonomy and ownership, developing self-efficacy through engagement, tailoring self-management strategies), initiating and sustaining motivation (encountering motivational hurdles, empathy for confronting life changes, fostering non-judgemental relationships, emphasising symptomatic and tangible benefits, harnessing support networks), and organisational and staffing barriers (staffing shortfalls, readdressing system inefficiencies). Conclusions Organisational support with collaborative multidisciplinary teams and individualised patient care were seen as necessary for developing positive patient-clinician relationships, delivering consistent nutrition advice, and building and sustaining patient motivation to enable change in dietary behaviour. Improving service delivery and developing and delivering targeted, multifaceted self-management interventions may enhance current nutritional management of patients on haemodialysis

    A Parameterized Centrality Metric for Network Analysis

    Full text link
    A variety of metrics have been proposed to measure the relative importance of nodes in a network. One of these, alpha-centrality [Bonacich, 2001], measures the number of attenuated paths that exist between nodes. We introduce a normalized version of this metric and use it to study network structure, specifically, to rank nodes and find community structure of the network. Specifically, we extend the modularity-maximization method [Newman and Girvan, 2004] for community detection to use this metric as the measure of node connectivity. Normalized alpha-centrality is a powerful tool for network analysis, since it contains a tunable parameter that sets the length scale of interactions. By studying how rankings and discovered communities change when this parameter is varied allows us to identify locally and globally important nodes and structures. We apply the proposed method to several benchmark networks and show that it leads to better insight into network structure than alternative methods.Comment: 11 pages, submitted to Physical Review

    Separable states and the geometric phases of an interacting two-spin system

    Full text link
    It is known that an interacting bipartite system evolves as an entangled state in general, even if it is initially in a separable state. Due to the entanglement of the state, the geometric phase of the system is not equal to the sum of the geometric phases of its two subsystems. However, there may exist a set of states in which the nonlocal interaction does not affect the separability of the states, and the geometric phase of the bipartite system is then always equal to the sum of the geometric phases of its subsystems. In this paper, we illustrate this point by investigating a well known physical model. We give a necessary and sufficient condition in which a separable state remains separable so that the geometric phase of the system is always equal to the sum of the geometric phases of its subsystems.Comment: 13 page

    Magnetostratigraphy of the Lower Triassic beds from Chaohu(China) and its implications for the Induan–Olenekian stage boundary.

    Get PDF
    A magnetostratigraphic study was performed on the lower 44 m of the West Pingdingshan section near Chaohu city, (Anhui province, China) in order to provide a magnetic polarity scale for the early Triassic. Data from 295 paleomagnetic samples is integrated with a detailed biostratigraphy and lithostratigraphy. The tilt-corrected mean direction from the West Pingdingshan section, passes the reversal and fold tests. The overall mean direction after tilt correction is D=299.9º, I=18.3º (κ=305.2, α95=1.9, N=19). The inferred paleolatitude of the sampling sites (31.6ºN, 117.8ºE) is about 9.4º, consistent with the stable South China block (SCB), though the declinations indicate some 101o counter-clockwise rotations with respect to the stable SCB since the Early Triassic. Low-field anisotropy of magnetic susceptibility indicates evidence of weak strain. The lower part of the Yinkeng Formation is dominated by reversed polarity, with four normal polarity magnetozones (WP2n to WP5n), with evidence of some thinner (<0.5 m thick) normal magnetozones. The continuous magnetostratigraphy from the Yinkeng Formation, provides additional high-resolution details of the polarity pattern through the later parts of the Induan into the lowest Olenekian. The magnetostratigraphic and biostratigraphic data shows the conodont marker for the base of the Olenekian (first presence of Neospathodus waageni) is shortly prior to the base of normal magnetozone WP5n. This provides a secondary marker for mapping the base of the Olenekian into successions without conodonts. This section provides the only well-integrated study from a Tethyan section across this boundary, but problems remain in definitively relating this boundary into Boreal sections with magnetostratigraphy

    Geometric, Variational Integrators for Computer Animation

    Get PDF
    We present a general-purpose numerical scheme for time integration of Lagrangian dynamical systems—an important computational tool at the core of most physics-based animation techniques. Several features make this particular time integrator highly desirable for computer animation: it numerically preserves important invariants, such as linear and angular momenta; the symplectic nature of the integrator also guarantees a correct energy behavior, even when dissipation and external forces are added; holonomic constraints can also be enforced quite simply; finally, our simple methodology allows for the design of high-order accurate schemes if needed. Two key properties set the method apart from earlier approaches. First, the nonlinear equations that must be solved during an update step are replaced by a minimization of a novel functional, speeding up time stepping by more than a factor of two in practice. Second, the formulation introduces additional variables that provide key flexibility in the implementation of the method. These properties are achieved using a discrete form of a general variational principle called the Pontryagin-Hamilton principle, expressing time integration in a geometric manner. We demonstrate the applicability of our integrators to the simulation of non-linear elasticity with implementation details
    corecore