20,556 research outputs found

    Lunar landing module reflectivity model

    Get PDF
    Lunar landing module reflectivity model based on Surveyor and Orbiter photographs of lunar craters, hills, and boulder

    Probable deviations in altitude reading given by the LM altimeter for the most rough surface along a certain given trajectory

    Get PDF
    Random noise calculations in altitude reading of lunar module altimeter for rough surfaces targe

    Strongly modulated transmissions in gapped armchair graphene nanoribbons with sidearm or on-site gate voltage

    Full text link
    We propose two schemes of field-effect transistor based on gapped armchair graphene nanoribbons connected to metal leads, by introducing sidearms or on-site gate voltages. We make use of the band gap to reach excellent switch-off character. By introducing one sidearm or on-site gate to the graphene nanoribbon, conduction peaks appear inside the gap regime. By further applying two sidearms or on-site gates, these peaks are broadened to conduction plateaus with a wide energy window, thanks to the resonance from the dual structure. The position of the conduction windows inside the gap can be fully controlled by the length of the sidearms or the on-site gate voltages, which allows "on" and "off" operations for a specific energy window inside the gap regime. The high robustness of both the switch-off character and the conduction windows is demonstrated and shows the feasibility of the proposed dual structures for real applications.Comment: 6 pages, 6 figure

    Gravitational Lensing by Dark Matter Halos with Non-universal Density Profiles

    Full text link
    The statistics of gravitational lensing can provide us with a very powerful probe of the mass distribution of matter in the universe. By comparing predicted strong lensing probabilities with observations, we can test the mass distribution of dark matter halos, in particular, the inner density slope. In this letter, unlike previous work that directly models the density profiles of dark matter halos semi-analytically, we generalize the density profiles of dark matter halos from high-resolution N-body simulations by means of generalized Navarro-Frenk-White (GNFW) models of three populations with slopes, α\alpha, of about -1.5, -1.3 and -1.1 for galaxies, groups and clusters, respectively. This approach is an alternative and independent way to examine the slopes of mass density profiles of halos. We present calculations of lensing probabilities using these GNFW profiles for three populations in various spatially flat cosmological models with a cosmological constant Λ\Lambda. It is shown that the compound model of density profiles does not match well with the observed lensing probabilities derived from the Jodrell-Bank VLA Astrometric Survey data in combination with the Cosmic Lens All-Sky Survey data. Together with the previous work on lensing probability, our results suggest that a singular isothermal sphere mass model of less than about 10^{13}h^{-1}M_{\sun} can predict strong lensing probabilities that are consistent with observations of small splitting angles.Comment: 11 pages, 2 figures, Accepted by ApJL for publication (February 10 issue 2004

    Simulated LM static reflectivity data, for site P-2-6

    Get PDF
    Simulated lunar module static reflectivity data for site P-2-

    Electron spectra close to a metal-to-insulator transition

    Full text link
    A high-resolution investigation of the electron spectra close to the metal-to-insulator transition in dynamic mean-field theory is presented. An all-numerical, consistent confirmation of a smooth transition at zero temperature is provided. In particular, the separation of energy scales is verified. Unexpectedly, sharp peaks at the inner Hubbard band edges occur in the metallic regime. They are signatures of the important interaction between single-particle excitations and collective modes.Comment: RevTeX 4, 4 pages, 4 eps figures; published versio

    A Parameterized Centrality Metric for Network Analysis

    Full text link
    A variety of metrics have been proposed to measure the relative importance of nodes in a network. One of these, alpha-centrality [Bonacich, 2001], measures the number of attenuated paths that exist between nodes. We introduce a normalized version of this metric and use it to study network structure, specifically, to rank nodes and find community structure of the network. Specifically, we extend the modularity-maximization method [Newman and Girvan, 2004] for community detection to use this metric as the measure of node connectivity. Normalized alpha-centrality is a powerful tool for network analysis, since it contains a tunable parameter that sets the length scale of interactions. By studying how rankings and discovered communities change when this parameter is varied allows us to identify locally and globally important nodes and structures. We apply the proposed method to several benchmark networks and show that it leads to better insight into network structure than alternative methods.Comment: 11 pages, submitted to Physical Review

    Precoded turbo code within 0.1dB of Shannon limit

    Get PDF
    The application of the precoding technique to turbo codes is investigated, resulting in a new class of turbo-like codes named precoded turbo codes. The introduction of a precoder provides a degree of freedom for code optimisation. As a result, an optimised rate-1/2 precoded turbo code with a threshold of 0.28 dB is designed using the EXIT chart
    corecore