General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

probable deviations In alditude reading GIVEN BY THES LM ALMTMETEBR FOR
 THE MOST ROUGB BURPACE ALOMG A CERTAII GIVEM TRAJECTORT*
 By

A. Tong and E. S. Hayre

TR-67-20

Wave Propagation Laboratory Department of Electrical Engineering

UNIVERSITY OF HOUSTON Cullen College of Engineering Cullen Boulevard Houston, Texas 77004
November, 1967

*This work is sponsored by NASA - Manned Spacecraft Center, under Contract mas-9-6760.

PROBABIE DEVIATIONS IN ALTITUDE PEADING
GIVEN BY THE LM ALTIMETER FOR
THE MOST FOOGH SURFACE ALONG A CBRTAIN GIVEN TRANECTORY

The apectrum of the backscattered energy for the Frequency Modulated Altimeter may be analysed tic sbtain the target range variations versus the target surface conditions. And the expected frequency r and consequently the associate altitude may be calculated (Rice, 1944) as

$$
\begin{equation*}
\left\langle f_{B}\right\rangle=\left[\int_{\frac{2 h f}{c}-f_{D}}^{\frac{\sigma^{2}(\theta) \sigma(\theta)}{c}-f_{0}} d f_{B} f_{B} \int_{\frac{2 h \dot{c}}{c}-f_{B}}^{\frac{f_{B}}{c}-G^{2}(\theta) \sigma(\theta)} f_{B}^{3} d f_{B}\right]^{\frac{1}{2}} \tag{1}
\end{equation*}
$$

where

\mathbf{f}_{B}	= the static beat frequency
h	- the actual range
$\mathbf{E}_{\mathbf{D}}$	- the doppler frequency
i	- the FM slope
c	= velocity of light
$\mathrm{G}^{2}(\theta)$	- the two-way antenna gain
$\sigma(0)$	= the target scattering coefficient

For the Landing Module (IM), the radar has a beam width of 3.5° by 7° and the orientation of the bean on the landing track is as shown in Fig. 1 for vertical incidence case.

Fig. 1 The minor-axis of the radar beam parallel to the direction of motion.

The return signal is averaged over a period of 231 milliseconds along the trajectory. The nordzontal velocity of the $L M$ during landing is small, and the surface covered by the radar in one period is comparabie to 150% of the beam cross-section (Tong and Hayre; 1967). Considering that the pitch angle of the vehicle, and the antenna angle do not rary within an averaging periods it suffices to treat the aystan as stationary with respect to the horizontal axis. If ite width of the landing track scanned by the radar is normaitzed, the average beat frequency may ba approximated using a one-dimensional profile.

In what follows the average beat frequency for $\theta=n_{1}$ at a fixed altitude is calculated.

Fig. 2 Geometry of the Apollo radar-detaction.

As shown in Fig. 2, the transformation of f_{B} to would bes

$$
\begin{array}{lll}
h=\frac{f_{8} c}{2 \dot{f}} & \text { or } & f_{B}=\frac{2 h \dot{f}}{c} \\
R_{1}=\frac{f_{1} c}{2 \dot{f}} & \text { or } & f_{1}=\frac{2 h \dot{f}}{c \cos \psi_{1}} \\
R_{2}=\frac{f_{2} c}{2 \dot{f}} & \text { or } & f_{2}=\frac{2 h \dot{f}}{c \cos \psi_{2}} \tag{4}
\end{array}
$$

In general:

$$
\begin{equation*}
f_{8}=\frac{2 h \frac{\%}{i}}{c \cos \theta} \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\text { and } \quad d f_{B}=\frac{2 h \dot{f}}{c} \frac{\sin \theta}{\cos ^{2} \theta} d \theta \tag{6}
\end{equation*}
$$

substituting (3), (4), (5) and (6) in (1), one obtains,

$$
\begin{equation*}
\left\langle f_{B}\right\rangle=\frac{2 h \dot{f}}{c}\left[\int_{\psi_{1}}^{4_{2}} \frac{G^{2}(\theta) \sigma(\theta) \operatorname{ran} \theta d \theta}{\int_{\psi_{1}}^{4_{2}} G^{2}(\theta) \sigma(\theta) \cos \theta \sin \theta d \theta}\right]^{1_{2}} \tag{7}
\end{equation*}
$$

The expression $\frac{2 \mathrm{hf}}{\mathrm{C}}$ in Eq. 7, is the beat frequency corresponding to the actual altitude of the transmitter, whereas the square root term is the ratio of the detected altitude to the actual altitude. Since the percent deviation in altitude is the essential information, one needs only to carry the calculation of the square root part of Eq. 7.

Based on the information of the radar beamwidth, the antenna gain is approxtaated to be

$$
\begin{equation*}
G^{2}(\theta)=\cos ^{4} 13 \theta \tag{8}
\end{equation*}
$$

and the scattering cross-section is chosen of point No. 8 Site P-II-6 of static runs of the acoustic simulation test and is shown in Fig. 3.

The percent deviation is plotted as shown in Fig. 4.

"REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

"REPRODUCIBILITY OF THE GRIGNAL PAGE IS POOR

CONCLUSION

This calculation shows that the percent deviation of the altitude reading from the actual would vary comsiderably from 798 to 2038 corresponding to angles of incidence of 0° (vertical incidence) to 60° degreas. A close examination of these results indicate the variation to be within ± 108 for look angles of $0,5^{\circ}, 20^{\circ}, 20^{\circ}, 25^{\circ}$, and 30°, whereas for 15° angle of incidence $1 t$ is -22% and for angles greater than 30°, it increages almont monotonically to +203 at $\theta=60^{\circ}$

RERERTEXCES

2. Tong, A. and H, S. Hayre. Lunar Surface Bias on Landing Module Altimeter Signal, Fechnical Report ir-67-19, Univeraity of houston, Wave Propagation Laboratories, Electrical Engineering Department, October, 1967.

