163 research outputs found
2D Hierarchical Microbarcodes with Expanded Storage Capacity for Optical Multiplex and Information Encryption
The design of nanosegregated fluorescent tags/barcodes by geometrical patterning with precise dimensions and hierarchies could integrate multilevel optical information within one carrier and enhance microsized barcoding techniques for ultrahigh-density optical data storage and encryption. However, precise control of the spatial distribution in micro/nanosized matrices intrinsically limits the accessible barcoding applications in terms of material design and construction. Here, crystallization forces are leveraged to enable a rapid, programmable molecular packing and rapid epitaxial growth of fluorescent units in 2D via crystallization-driven self-assembly. The fluorescence encoding density, scalability, information storage capacity, and decoding techniques of the robust 2D polymeric barcoding platform are explored systematically. These results provide both a theoretical and an experimental foundation for expanding the fluorescence storage capacity, which is a longstanding challenge in state-of-the-art microbarcoding techniques and establish a generalized and adaptable coding platform for high-throughput analysis and optical multiplexing
Value of machine learning model based on MRI radiomics in predicting histological grade of cervical squamous cell carcinoma
Objective To explore the predictive value of different machine learning models based on MRI radiomics combined with clinical features for histological grade of cervical squamous cell carcinoma. Methods Clinical data of 150 patients with cervical squamous cell carcinoma confirmed by pathological biopsy were retrospectively analyzed. They were randomly divided into the training set and validation set at a ratio of 4∶1. Features were extracted from the regions of interest of T2WI fat suppression sequence (FS-T2WI) and enhanced T1WI (delayed phase). After dimensionality reduction and feature selection, logistic regression (LR), support vector machine (SVM), naïve Bayes (NB), random forest (RF), Light Gradient Boosting Machine (LightGBM), K-nearest neighbor (KNN) were used to construct a radiomics model for predicting the histological grade of cervical squamous cell carcinoma. The area under the receiver operating characteristic (ROC) curve (AUC) was used to evaluate the predictive performance of the six models. Univariate and multivariate logistic regression analyses were performed to predict the independent risk factors, and a combined model of clinical and radiomics was established. The differences of each model were compared by AUC, and the clinical value of the model was evaluated by decision curve (DCA). Results In the radiomics model, the LightGBM model had the largest AUC (0.910 in the training set, and 0.839 in the validation set). The AUC of clinical features combined with LightGBM model was the largest (0.935 in the training set, and 0.888 in the validation set), which was higher than those of clinical model (0.762 in the training set, and 0.710 in the validation set) and LightGBM radiomics model. Conclusions The LightGBM model has a high predictive value in the radiomics model. The combined model has the optimal DCA effect and the highest clinical net benefit. The combined prediction model combining radiomics and clinical features has good predictive value for cervical squamous cell carcinoma with low differentiation, providing a non-invasive and efficient method for clinical decision-making
Decoding signaling mechanisms: unraveling the targets of guanylate cyclase agonists in cardiovascular and digestive diseases
Soluble guanylate cyclase agonists and guanylate cyclase C agonists are two popular drugs for diseases of the cardiovascular system and digestive systems. The common denominator in these conditions is the potential therapeutic target of guanylate cyclase. Thanks to in-depth explorations of their underlying signaling mechanisms, the targets of these drugs are becoming clearer. This review explains the recent research progress regarding potential drugs in this class by introducing representative drugs and current findings on them
Simultaneous removal of SO2 and NOx by a new combined spray-and-scattered-bubble technology based on preozonation: from lab scale to pilot scale
A new technology (called here, spray-and-scattered-bubble technology) based on preozonation was designed and tested for simultaneous removal of SO2 and NOx from power plant flue gas. It combines the advantages of the common spray tower and the jet bubble reactor, in which the flue gas experiences an initial SO2/NOx removal in the spray zone and then undergoes further removal in the bubble zone. Factors that affect the simultaneous removal of SO2/NOx were investigated through lab-scale experiments, by varying the O3/NO molar ratio, liquid/gas ratio and the immersion depth. The results showed the removal of SO2 and NOx can be significantly improved as compared to a separate spray column or bubble reactor, by as much as 17%, for the spray column and 18% for the bubble reactor for NOx and 11% for the spray column, and 13% for the bubble reactor for SO2, for liquid/gas ratio of 4 dm3/m3 or immersion depth of 100 mm. The O3/NO molar ratio had little effect on the SO2 removal, but it strongly affected the removal efficiency of NOx especially when it was less than 1.0. Both the liquid/gas ratio and immersion depth demonstrated a positive correlation with the removal efficiency. However, a balance must be maintained between efficiency and economics, since the liquid/gas ratio directly influences the performance and number of the circulating pumps, and the depth is closely related to the flue gas pressure drop, and both factors affect energy requirements. To further confirm its industrial feasibility, a 30 h test using real coal-fired flue gas was conducted in a pilot-scale experimental facility (flue gas volume of 5000 Nm3/h). Increasing SO2 concentration in flue gas can promote the removal efficiency of NOx, but the SO2 removal was almost complete under all conditions tested. Finally, taking a 300 MW unit as an example,- the total energy cost of this new technology is estimated as being 10% lower than that of the common spray tower technology, based on an analysis using Aspen Plusâ„¢, with the largest difference reflected in the energy requirements of the circulating pumps and the ozonizer. Over all, the new technology offers the joint advantages of reducing emissions and saving energy
Pathological complete response to long-course neoadjuvant alectinib in lung adenocarcinoma with EML4-ALK rearrangement: report of two cases and systematic review of case reports
ObjectiveDespite the promising efficacy and tolerability of alectinib in treating advanced anaplastic lymphoma kinase (ALK) positive non-small cell lung cancer (NSCLC), the role of alectinib in neoadjuvant setting remains understudied in ALK-rearranged resectable lung cancer.MethodsOur report concerns two cases of early-stage NSCLC with complete pathologic responses to off-label use of long-course neoadjuvant alectinib. PubMed, Web of Science, and Cochrane Library were searched comprehensively for ALK-positive resectable cases with neoadjuvant alectinib. The papers were chosen following PRISMA recommendations. Seven cases from the literature and two present cases were evaluated.ResultsTwo cases with stage IIB (cT3N0M0) EML4-ALK lung adenocarcinoma received long-course (more than 30 weeks) of neoadjuvant alectinib followed by R0 lobectomy with the complete pathological response. In our systematic review, 74 studies were included in the original search. Application of the screening criteria resulted in 18 articles deemed eligible for full-text reading. Following the application of the exclusion criteria, out of six papers, seven cases were selected for inclusion in the final analysis and were included in the systematic review. None of the studies were included in the quantitative analysis.ConclusionWe report two cases of lung adenocarcinoma with resectable ALK-positive that achieved pCR with long-course neoadjuvant alectinib. Our cases and a systematic review of the literature support the feasibility of neoadjuvant alectinib treatment for NSCLC. However, large clinical trials must be conducted in the future to determine the treatment course and efficacy of the neoadjuvant alectinib modality.Systematic review registrationhttps://www.crd.york.ac.uk/PROSPERO, identifier CRD42022376804
High-quality ice plant reference genome analysis provides insights into genome evolution and allows exploration of genes involved in the transition from C3 to CAM pathways
Ice plant (Mesembryanthemum crystallinum), a member of the Aizoaceae family, is a typical halophyte crop and a model plant for studying the mechanism of transition from C3 photosynthesis to crassulacean acid metabolism (CAM). Here, we report a high-quality chromosome-level ice plant genome sequence. This 98.05% genome sequence is anchored to nine chromosomes, with a total length of 377.97 Mb and an N50 scaffold of 40.45 Mb. Almost half of the genome (48.04%) is composed of repetitive sequences, and 24 234 genes have been annotated. Subsequent to the ancient whole-genome triplication (WGT) that occurred in eudicots, there has been no recent whole-genome duplication (WGD) or WGT in ice plants. However, we detected a novel WGT event that occurred in the same order in Simmondsia chinensis, which was previously overlooked. Our findings revealed that ice plants have undergone chromosome rearrangements and gene removal during evolution. Combined with transcriptome and comparative genomic data and expression verification, we identified several key genes involved in the CAM pathway and constructed a comprehensive network. As the first genome of the Aizoaceae family to be released, this report will provide a rich data resource for comparative and functional genomic studies of Aizoaceae, especially for studies on salt tolerance and C3-to-CAM transitions to improve crop yield and resistance
- …