14 research outputs found

    Allelic shift in cis-elements of the transcription factor RAP2.12 underlies adaptation associated with humidity in Arabidopsis thaliana

    Get PDF
    Populations of widespread species are usually geographically distributed through contrasting stresses, but underlying genetic mechanisms controlling this adaptation remain largely unknown. Here, we show that in Arabidopsis thaliana, allelic changes in the cis-regulatory elements, WT box and W box, in the promoter of a key transcription factor associated with oxygen sensing, RELATED TO AP 2.12 (RAP2.12), are responsible for differentially regulating tolerance to drought and flooding. These two cis-elements are regulated by different transcription factors that downstream of RAP2.12 results in differential accumulation of hypoxia-responsive transcripts. The evolution from one cis-element haplotype to the other is associated with the colonization of humid environments from arid habitats. This gene thus promotes both drought and flooding adaptation via an adaptive mechanism that diversifies its regulation through noncoding alleles

    One AP2/ERF Transcription Factor Positively Regulates Pi Uptake and Drought Tolerance in Poplar

    No full text
    Drought decreases the inorganic phosphate (Pi) supply of soil, resulting in Pi starvation of plants, but the molecular mechanism of how plants, especially the perennial trees, are tolerant to drought stress and Pi starvation, is still elusive. In this study, we identified an AP2/ERF transcription factor gene, PalERF2, from Populus alba var. pyramidalis, and it was induced by both mannitol treatment and Pi starvation. Overexpressing and knocking-down of PalERF2 both enhanced and attenuated tolerance to drought stress and Pi deficiency compared to WT, respectively. Moreover, the overexpression of PalERF2 up-regulated the expression levels of Pi starvation-induced (PSI) genes and increased Pi uptake under drought conditions; however, its RNAi poplar showed the opposite phenotypes. Subsequent analysis indicated that PalERF2 directly modulated expressions of drought-responsive genes PalRD20 and PalSAG113, as well as PSI genes PalPHL2 and PalPHT1;4, through binding to the DRE motifs on their promoters. These results clearly indicate that poplars can recruit PalERF2 to increase the tolerance to drought and also elevate Pi uptake under drought stress

    Investigation on the asymmetric inter-fracture asynchronous huff-n-puff technology for the horizontal well group in the tight oil reservoir

    No full text
    Water huff-n-puff is one of the effective energy supplement methods for the development of tight oil reservoirs by horizontal wells. However, the oil production performance of water huff-n-puff severely decreases after several cycles. Available researches indicate that the inter-fracture asynchronous injection-production technology for the horizontal well is an efficient method for improving the oil production performance of water huff-n-puff. However, considering the object of the inter-fracture asynchronous huffn- puff is the single horizontal well, the study for a horizontal well group is less. Therefore, the asymmetric inter-fracture asynchronous huff-n-puff technology for the horizontal well group was investigated in this paper. The oil productions of the horizontal well group for different huff-n-puff modes were compared and analyzed first. After that, the oil recovery mechanisms of the asymmetric inter-fracture asynchronous huff-n-puff technology for the horizontal well group were revealed. Finally, the influence of operating parameters on the oil production of the horizontal well group for the asymmetric inter-fracture asynchronous huff-n-puff technology for the horizontal well group was studied by the numerical simulation method. The results show that compared with the water huff-n-puff, the accumulative oil productions for the asymmetric inter-fracture asynchronous huff-n-puff technology for the horizontal well group increased by 5134.8m3, and the increased amplitude is 36.86%. The imbibition, the inter-fracture displacement, and the inter-well displacement are the main oil recovery mechanisms of the asymmetric inter-fracture asynchronous huff-n-puff technology for the horizontal well group. The accumulative oil production of the horizontal well group for the asymmetric inter-fracture asynchronous huff-n-puff increases first, and then declines, finally tend to be stable with the increase of injection rate. Both the injection volume and the soaking time show a positive correlation with the accumulative oil production. The accumulative oil production of the horizontal well group decreases with the increase of production rate due to the aggravation of water channeling in the production stage. This work could provide certain theoretical guidance for the effective development of similar reservoirs by the horizontal well group

    Genome-Wide Analysis of the Homeobox Gene Family and Identification of Drought-Responsive Members in <i>Populus trichocarpa</i>

    No full text
    Homeobox (HB) genes play critical roles in the regulation of plant morphogenesis, growth and development. Here, we identified a total of 156 PtrHB genes from the Populus trichocarpa genome. According to the topologies and taxonomy of the phylogenetic tree constructed by Arabidopsis thaliana HB members, all PtrHB proteins were divided into six subgroups, namely HD-ZIP, ZF-HD, HB-PHD, TALE, WOX and HB-OTHERS. Multiple alignments of conserved homeodomains (HDs) revealed the conserved loci of each subgroup, while gene structure analysis showed similar exon–intron gene structures, and motif analysis indicated the similarity of motif number and pattern in the same subgroup. Promoter analysis indicated that the promoters of PtrHB genes contain a series of cis-acting regulatory elements involved in responding to various abiotic stresses, indicating that PtrHBs had potential functions in these processes. Collinearity analysis revealed that there are 96 pairs of 127 PtrHB genes mainly distributing on Chromosomes 1, 2, and 5. We analyzed the spatio-temporal expression patterns of PtrHB genes, and the virus-induced gene silencing (VIGS) of PtrHB3 gene resulted in the compromised tolerance of poplar seedlings to mannitol treatment. The bioinformatics on PtrHB family and preliminary exploration of drought-responsive genes can provide support for further study of the family in woody plants, especially in drought-related biological processes. It also provides a direction for developing new varieties of poplar with drought resistance. Overall, our results provided significant information for further functional analysis of PtrHB genes in poplar and demonstrated that PtrHB3 is a dominant gene regulating tolerance to water stress treatment in poplar seedlings

    Genome-Wide Identification and Expression Profile of OSCA Gene Family Members in Triticum aestivum L.

    No full text
    Hyperosmolality and various other stimuli can trigger an increase in cytoplasmic-free calcium concentration ([Ca2+]cyt). Members of the Arabidopsis thaliana (L.) reduced hyperosmolality-gated calcium-permeable channels (OSCA) gene family are reported to be involved in sensing extracellular changes to trigger hyperosmolality-induced [Ca2+]cyt increases and controlling stomatal closure during immune signaling. Wheat (Triticum aestivum L.) is a very important food crop, but there are few studies of its OSCA gene family members. In this study, 42 OSCA members were identified in the wheat genome, and phylogenetic analysis can divide them into four clades. The members of each clade have similar gene structures, conserved motifs, and domains. TaOSCA genes were predicted to be regulated by cis-acting elements such as STRE, MBS, DRE1, ABRE, etc. Quantitative PCR results showed that they have different expression patterns in different tissues. The expression profiles of 15 selected TaOSCAs were examined after PEG (polyethylene glycol), NaCl, and ABA (abscisic acid) treatment. All 15 TaOSCA members responded to PEG treatment, while TaOSCA12/-39 responded simultaneously to PEG and ABA. This study informs research into the biological function and evolution of TaOSCA and lays the foundation for the breeding and genetic improvement of wheat

    Transcriptional landscape of highly lignified poplar stems at single-cell resolution

    No full text
    Abstract Background Plant secondary growth depends on the activity of the vascular cambium, which produces xylem and phloem. Wood derived from xylem is the most abundant form of biomass globally and has played key socio-economic and subsistence roles throughout human history. However, despite intensive study of vascular development, the full diversity of cell types and the gene networks engaged are still poorly understood. Results Here, we have applied an optimized protoplast isolation protocol and RNA sequencing to characterize the high-resolution single-cell transcriptional landscape of highly lignified poplar stems. We identify 20 putative cell clusters with a series of novel cluster-specific marker genes and find that these cells are highly heterogeneous based on the transcriptome. Analysis of these marker genes’ expression dynamics enables reconstruction of the cell differentiation trajectories involved in phloem and xylem development. We find that different cell clusters exhibit distinct patterns of phytohormone responses and emphasize the use of our data to predict potential gene redundancy and identify candidate genes related to vascular development in trees. Conclusions These findings establish the transcriptional landscape of major cell types of poplar stems at single-cell resolution and provide a valuable resource for investigating basic principles of vascular cell specification and differentiation in trees

    Highly Hydroxide-Conductive Nanostructured Solid Electrolyte via Predesigned Ionic Nanoaggregates

    No full text
    The creation of interconnected ionic nanoaggregates within solid electrolytes is a crucial yet challenging task for fabricating high-performance alkaline fuel cells. Herein, we present a facile and generic approach to embedding ionic nanoaggregates via predesigned hybrid core–shell nanoarchitecture within nonionic polymer membranes as follows: (i) synthesizing core–shell nanoparticles composed of SiO<sub>2</sub>/densely quaternary ammonium-functionalized polystyrene. Because of the spatial confinement effect of the SiO<sub>2</sub> “core”, the abundant hydroxide-conducting groups are locally aggregated in the functionalized polystyrene “shell”, forming ionic nanoaggregates bearing intrinsic continuous ion channels; (ii) embedding these ionic nanoaggregates (20–70 wt %) into the polysulfone matrix to construct interconnected hydroxide-conducting channels. The chemical composition, physical morphology, amount, and distribution of the ionic nanoaggregates are facilely regulated, leading to highly connected ion channels with high effective ion mobility comparable to that of the state-of-the-art Nafion. The resulting membranes display strikingly high hydroxide conductivity (188.1 mS cm<sup>–1</sup> at 80 °C), which is one of the highest results to date. The membranes also exhibit good mechanical properties. The independent manipulation of the conduction function and nonconduction function by the ionic nanoaggregates and nonionic polymer matrix, respectively, opens a new avenue, free of microphase separation, for designing high-performance solid electrolytes for diverse application realms
    corecore