11,107 research outputs found

    Ultrafast response of surface electromagnetic waves in an aluminum film perforated with subwavelength hole arrays

    Full text link
    The ultrafast dynamics of surface electromagnetic waves photogenerated on aluminum film perforated with subwavelength holes array was studied in the visible spectral range by the technique of transient photomodulation with 100 fs time resolution. We observed a pronounced blueshift of the resonant transmission band that reveals the important role of plasma attenuation in the optical response of nanohole arrays. The blueshift is inconsistent with plasmonic mechanism of extraordinary transmission and points to the crucial role of interference in the formation of transmission bands. The transient photomodulation spectra were successfully modeled within the Boltzmann equation approach for the electron-phonon relaxation dynamics, involving non-equilibrium hot electrons and quasi-equilibrium phonons.Comment: 4 pages, 3 figure

    Structure and substrate selectivity of the 750-kDa α6β6 holoenzyme of geranyl-CoA carboxylase.

    Get PDF
    Geranyl-CoA carboxylase (GCC) is essential for the growth of Pseudomonas organisms with geranic acid as the sole carbon source. GCC has the same domain organization and shares strong sequence conservation with the related biotin-dependent carboxylases 3-methylcrotonyl-CoA carboxylase (MCC) and propionyl-CoA carboxylase (PCC). Here we report the crystal structure of the 750-kDa α6β6 holoenzyme of GCC, which is similar to MCC but strikingly different from PCC. The structures provide evidence in support of two distinct lineages of biotin-dependent acyl-CoA carboxylases, one carboxylating the α carbon of a saturated organic acid and the other carboxylating the γ carbon of an α-β unsaturated acid. Structural differences in the active site region of GCC and MCC explain their distinct substrate preferences. Especially, a glycine residue in GCC is replaced by phenylalanine in MCC, which blocks access by the larger geranyl-CoA substrate. Mutation of this residue in the two enzymes can change their substrate preferences

    The observation of a positive magnetoresistance and close correlation among lattice, spin and charge around TC in antipervoskite SnCMn3

    Full text link
    The temperature dependences of magnetization, electrical transport, and thermal transport properties of antiperovskite compound SnCMn3 have been investigated systematically. A positive magnetoresistance (~11%) is observed around the ferrimagnetic-paramagnetic transition (TC ~ 280 K) in the field of 50 kOe, which can be attributed to the field-induced magnetic phase transition. The abnormalities of resistivity, Seebeck coefficient, normal Hall effect and thermal conductivity near TC are suggested to be associated with an abrupt reconstruction of electronic structure. Further, our results indicate an essential interaction among lattice, spin and charge degrees of freedom around TC. Such an interaction among various degrees of freedom associated with sudden phase transition is suggested to be characteristic of Mn-based antiperovskite compounds.Comment: 13 pages, 5 figure

    Interactions of soil moisture and plant community properties in meadows restored from abandoned farmlands on the Sanjiang Plain, China

    Get PDF
    Abstract Soil moisture is a major driving force of plant community succession in restored meadows. Existing studies mainly focus on diversity-productivity relationships. However, studies which determine the effects of soil moisture on the plant community properties in restored meadows are lacking. In this study, we conducted a chronosequence analysis of the interactions between soil water content variation and plant community properties in meadows following passive restoration (3-, 5-, 9-, 14-, 17-, 21-year restoration) of abandoned farmlands on the Sanjiang Plain, China. Results showed that the plant community was characterized by ruderal plants in the initial year of succession, and then by perennial plants such as Calamagrostis angustifolia and Carex spp. in older restored meadows. Similarity of restored community to target site increased across succession time whereas species diversity gradually decreased. Plant height, coverage and biomass increased with restoration time, with plant density being the exception. The community height, coverage and root/shoot ratio were positively related to the water content in the surface soil layer (0–10 cm). Conversely, plant density was significantly and negatively related with soil moisture at 0–10 cm soil depth. Plant diversity (Shannon index, Richness index and evenness) was closely correlated to soil water content at the soil depth of 0–10 cm. Our findings indicate that vegetation of cultivated meadows could be effectively restored by passive restoration. Change of plant species diversity is an especially important response to hydrological recovery in restored meadows on the Sanjiang Plain

    Comparison of chemical profiles and effectiveness between Erxian decoction and mixtures of decoctions of its individual herbs : a novel approach for identification of the standard chemicals

    Get PDF
    Acknowledgements This study was partially supported by grants from the Seed Funding Programme for Basic Research (Project Number 201211159146 and 201411159213), the University of Hong Kong. We thank Mr Keith Wong and Ms Cindy Lee for their technical assistances.Peer reviewedPublisher PD
    corecore