6,544 research outputs found

    High mobility in a van der Waals layered antiferromagnetic metal

    Full text link
    Magnetic van der Waals (vdW) materials have been heavily pursued for fundamental physics as well as for device design. Despite the rapid advances, so far magnetic vdW materials are mainly insulating or semiconducting, and none of them possesses a high electronic mobility - a property that is rare in layered vdW materials in general. The realization of a magnetic high-mobility vdW material would open the possibility for novel magnetic twistronic or spintronic devices. Here we report very high carrier mobility in the layered vdW antiferromagnet GdTe3. The electron mobility is beyond 60,000 cm2 V-1 s-1, which is the highest among all known layered magnetic materials, to the best of our knowledge. Among all known vdW materials, the mobility of bulk GdTe3 is comparable to that of black phosphorus, and is only surpassed by graphite. By mechanical exfoliation, we further demonstrate that GdTe3 can be exfoliated to ultrathin flakes of three monolayers, and that the magnetic order and relatively high mobility is retained in approximately 20-nm-thin flakes

    Ultrasonic scouring of wool and its effects on fibre breakage during carding

    Full text link
    Ultrasonics has shown the potential to reduce the cost and environmental impact of textile processing. This work investigates the impact of ultrasonic scouring on fibre entanglement caused during the scouring process. Levels of fibre entanglement were quantified by measuring fibre length using OFDA4000 after carding. A significant reduction in fibre entanglement after ultrasonic scouring was observed and this was due to a reduced fibre migration in the wash bath when compared with the mechanical agitation seen in conventional scouring process. Fibre cuticle scale damage resulting from the ultrasonic irradiation may also have contributed to the reduction in fibre entanglement. A reduced level of fibre entanglement from ultrasonic wool scouring leads to a reduction in fibre breakage during carding

    Comprehensive and Holistic Analysis of HT-29 Colorectal Cancer Cells and Tumor-Bearing Nude Mouse Model: Interactions Among Fractions Derived From the Chinese Medicine Formula Tian Xian Liquid in Effects on Human Colorectal Carcinoma

    Get PDF
    The Chinese medicine formula Tian Xian Liquid (TXL) has been used clinically for cancer therapy in China for more than 25 years. However, the comprehensive and holistic effects of its bioactive fractions for various antitumor therapeutic effects have not been unraveled. This is the first study to scientifically elucidate the holistic effect of Chinese medicine formula for treating colon cancer, hence allowing a better understanding of the essence of Chinese medicine formula, through the comparison of the actions of TXL and its functional constituent fractions, including ethyl acetate (EA), butanol (BU), and aqueous (WA) fractions. Tissue-specific proliferative/antiproliferative effects of these fractions on human colorectal carcinoma HT-29 cells and splenocytes were studied by using the MTT assay. Their modulations on the expression of markers of antiproliferation, antimetastasis, reversion of multidrug resistance in treated HT-29 cells were examined with real-time polymerase chain reaction and Western blot analysis, and their modulations in a xenografted nude mouse model were examined by Western blot analysis. Results revealed that EA fraction slightly inhibited the proliferation of HT-29 cells, but tissue-specifically exerted the most potent antiproliferative effect on splenocytes. On the contrary, only TXL and BU fraction tissue-specifically contributed to the proliferation of splenocytes, but inhibited the proliferation of HT-29 cells. WA fraction exerted the most potent antiproliferative effect on HT-29 cells and also the strongest inhibitory action on tumor size in the nude mouse model in our previous study. In the HT-29 model, TXL and WA fraction exerted the most pronounced effect on upregulation of p21 mRNA and protein; TXL, and EA and WA fractions exerted the effect on downregulation of G1 phase cell cycle protein, cyclin D1 mRNA and protein; EA and BU fractions exerted the most prominent anti-invasive effect on anti-invasion via downregulation of MMP-1 mRNA; TXL potently reversed most multidrug resistance via downregulation of MDR-1 protein. In conclusion, the comprehensive and holistic effects of TXL were demonstrated with (a) mutual accentuation and mutual enhancement, (b) mutual counteraction and mutual suppression, and (c) mutual antagonism among the 3 constituent fractions. Moreover, the design of the present study may lead to further development of more tissue-specific effective drugs with minimal side effects for clinical use in combating carcinoma.published_or_final_versio

    ZNF750 is a lineage-specific tumour suppressor in squamous cell carcinoma.

    Get PDF
    ZNF750 controls epithelial homeostasis by regulating epidermal-differentiation genes, a role underscored by its pathogenic mutations in esophageal squamous cell cancers (SCCs). However, the precise role of ZNF750 in SCC cell biology remains unclear. In this study, we report that ZNF750 is exclusively deleted, mutated and underexpressed in human SCCs, and low ZNF750 expression is associated with poor survival. Restoration of wildtype, but not mutant ZNF750 protein uniquely inhibited the malignant phenotypes of SCC cells both in vitro and in vivo. Notably, ZNF750 promoted the expression of a long non-coding RNA (TINCR), which mediated both cancer-inhibition and differentiation-induction effects of ZNF750. In addition, ZNF750 potently suppressed cell migration by directly inhibiting the transactivation of LAMC2. Together, our findings characterize ZNF750 as a crucial SCC-specific suppressor and uncover its novel anticancer-associated functions

    Correlation dynamics between electrons and ions in the fragmentation of D2_2 molecules by short laser pulses

    Full text link
    We studied the recollision dynamics between the electrons and D2+_2^+ ions following the tunneling ionization of D2_2 molecules in an intense short pulse laser field. The returning electron collisionally excites the D2+_2^+ ion to excited electronic states from there D2+_2^+ can dissociate or be further ionized by the laser field, resulting in D+^+ + D or D+^+ + D+^+, respectively. We modeled the fragmentation dynamics and calculated the resulting kinetic energy spectrum of D+^+ to compare with recent experiments. Since the recollision time is locked to the tunneling ionization time which occurs only within fraction of an optical cycle, the peaks in the D+^+ kinetic energy spectra provides a measure of the time when the recollision occurs. This collision dynamics forms the basis of the molecular clock where the clock can be read with attosecond precision, as first proposed by Corkum and coworkers. By analyzing each of the elementary processes leading to the fragmentation quantitatively, we identified how the molecular clock is to be read from the measured kinetic energy spectra of D+^+ and what laser parameters be used in order to measure the clock more accurately.Comment: 13 pages with 14 figure
    corecore