5 research outputs found

    Structure of Osh3 Reveals a Conserved Mode of Phosphoinositide Binding in Oxysterol-Binding Proteins

    Get PDF
    SummaryThe oxysterol-binding protein (OSBP)-related proteins (ORPs) are conserved from yeast to humans, and implicated in the regulation of lipid homeostasis and in signaling pathways. Saccharomyces cerevisiae has seven ORPs (Osh1–Osh7) that share one unknown essential function. Here, we report the 1.5–2.3 Å structures of the PH domain and ORD (OSBP-related domain) of yeast Osh3 in apo-form or in complex with phosphatidylinositol 4-phosphate (PI[4]P). Osh3 recognizes PI(4)P by the highly conserved residues in the tunnel of ORD whereas it lacks sterol binding due to the narrow hydrophobic tunnel. Yeast complementation tests suggest that PI(4)P binding to PH and ORD is essential for function. This study suggests that the unifying feature in all ORP homologs is the binding of PI(4)P to ORD and sterol binding is additional to certain homologs. Structural modeling of full-length Osh3 is consistent with the concept that Osh3 is a lipid transfer protein or regulator in membrane contact sites

    Structural basis of sterol recognition and nonvesicular transport by lipid transfer proteins anchored at membrane contact sites

    No full text
    Membrane contact sites (MCSs) in eukaryotic cells are hotspots for lipid exchange, which is essential for many biological functions, including regulation of membrane properties and protein trafficking. Lipid transfer proteins anchored at membrane contact sites (LAMs) contain sterol-specific lipid transfer domains [StARkin domain (SD)] and multiple targeting modules to specific membrane organelles. Elucidating the structural mechanisms of targeting and ligand recognition by LAMs is important for understanding the interorganelle communication and exchange at MCSs. Here, we determined the crystal structures of the yeast Lam6 pleckstrin homology (PH)-like domain and the SDs of Lam2 and Lam4 in the apo form and in complex with ergosterol. The Lam6 PH-like domain displays a unique PH domain fold with a conserved N-terminal alpha-helix. The Lam6 PH-like domain lacks the basic surface for phosphoinositide binding, but contains hydrophobic patches on its surface, which are critical for targeting to endoplasmic reticulum (ER)-mitochondrial contacts. Structures of the LAM SDs display a helix-grip fold with a hydrophobic cavity and a flexible Omega 1-loop as a lid. Ergosterol is bound to the pocket in a head-down orientation, with its hydrophobic acyl group located in the tunnel entrance. The Omega 1-loop in an open conformation is essential for ergosterol binding by direct hydrophobic interaction. Structural comparison suggested that the sterol binding mode of the Lam2 SD2 is likely conserved among the sterol transfer proteins of the StARkin superfamily. Structural models of full-length Lam2 correlated with the sterol transport function at the membrane contact sites

    Structural insights into nonvesicular lipid transport by the oxysterol binding protein homologue family

    No full text
    Sterols such as cholesterol in mammals and ergosterol in fungi are essential membrane components and play a key role in membrane function and in cell signaling. The intracellular distribution and processing of sterols and other phospholipids are in part carried out by oxysterol binding protein-related proteins (ORPs) in eukaryotes. Seven ORPs (Oshl-Osh7 proteins) in yeast have distinct functions in maintaining distribution, metabolism and signaling of intracellular lipids but they share at least one essential function. Significant progress has been made in understanding the ligand specificity and mechanism of non-vesicular lipid transport by ORPs. The unique structural features of Osh proteins explain the diversity and specificity of functions in PI(4)P-coupled lipid transport optimized in membrane contact sites. This review discusses the current advances in structural biology regarding this protein family and its potential functions, introducing them as the key players in the novel pathways of phosphoinositide-coupled directional transport of various lipids. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon
    corecore