9 research outputs found
A drained nutrient-poor peatland forest in boreal Sweden constitutes a net carbon sink after integrating terrestrial and aquatic fluxes
Northern peatlands provide a globally important carbon (C) store. Since the beginning of the 20th century, however, large areas of natural peatlands have been drained for biomass production across Fennoscandia. Today, drained peatland forests constitute a common feature of the managed boreal landscape, yet their ecosystem C balance and associated climate impact are not well understood, particularly within the nutrient-poor boreal region. In this study, we estimated the net ecosystem carbon balance (NECB) from a nutrient-poor drained peatland forest and an adjacent natural mire in northern Sweden by integrating terrestrial carbon dioxide (CO2) and methane (CH4) fluxes with aquatic losses of dissolved organic C (DOC) and inorganic C based on eddy covariance and stream discharge measurements, respectively, over two hydrological years. Since the forest included a dense spruce-birch area and a sparse pine area, we were able to further evaluate the effect of contrasting forest structure on the NECB and component fluxes. We found that the drained peatland forest was a net C sink with a 2-year mean NECB of −115 ± 5 g C m−2 year−1 while the adjacent mire was close to C neutral with 14.6 ± 1.7 g C m−2 year−1. The NECB of the drained peatland forest was dominated by the net CO2 exchange (net ecosystem exchange [NEE]), whereas NEE and DOC export fluxes contributed equally to the mire NECB. We further found that the C sink strength in the sparse pine forest area (−153 ± 8 g C m−2 year−1) was about 1.5 times as high as in the dense spruce-birch forest area (−95 ± 8 g C m−2 year−1) due to enhanced C uptake by ground vegetation and lower DOC export. Our study suggests that historically drained peatland forests in nutrient-poor boreal regions may provide a significant net ecosystem C sink and associated climate benefits
Initial effects of post-harvest ditch cleaning on greenhouse gas fluxes in a hemiboreal peatland forest
Ditch cleaning (DC) is a well-established forestry practice across Fennoscandia to lower water table levels (WTL) and thereby facilitate the establishment of tree seedlings following clear-cutting. However, the implications from these activities for ecosystem-atmosphere greenhouse gas (GHG) exchanges are poorly understood at present. We assessed the initial DC effects on the GHG fluxes in a forest clear-cut on a drained fertile peatland in hemiboreal Sweden, by comparing chamber measurements of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) fluxes from soil and ditches in DC and uncleaned (UC) areas over the first two post-harvest years. We also evaluated spatial effects by comparing fluxes at 4 m and 40 m from ditches. We found that 2 years after DC, mean (+/- standard error) WTL of-65 +/- 2 cm was significantly lower in the DC area compared to-56 +/- 2 cm in the UC area. We further observed lower gross primary production and ecosystem respiration in the first year after DC which coincided with delayed development of herbaceous ground vegetation. We also found higher CH4 uptake but no difference in N2O fluxes after DC. Greater CH4 uptake occurred at 4 m compared to 40 m away from both cleaned and uncleaned ditches. Model extrapolation suggests that total annual GHG emissions in the second year were reduced from 49.4 +/- 17.0 t-CO2-eq-ha(-1) -year(-1) in the UC area to 27.8 +/- 10.3 t-CO2-eq-ha(-1) -year(-1) in the DC area. A flux partitioning approach suggested that this was likely caused by decreased heterotrophic respiration, possibly because of enhanced soil dryness following DC during the dry meteorological conditions. CH(4 )and N2O fluxes from clear-cut areas contributed < 2 % to the total (soil, ditches) GHG budget. Similarly the area -weighted contributions by CO2 and CH4 emissions from both cleaned and uncleaned ditches were < 2 %. Thus, our study highlights that DC may considerably alter the post-harvest GHG fluxes of drained peatland forests. However, long-term observations under various site conditions and forest rotation stages are warranted to better understand DC effects on the forest GHG balance
Consequences of rewetting and ditch cleaning on hydrology, water quality and greenhouse gas balance in a drained northern landscape
Drainage for forestry has created ~ 1 million km of artificial waterways in Sweden, making it one of the largest human-induced environmental disturbances in the country. These extensive modifications of both peatland and mineral soil dominated landscapes still carry largely unknown, but potentially enormous environmental legacy effects. However, the consequences of contemporary ditch management strategies, such as hydrological restoration via ditch blocking or enhancing forest drainage to promote biomass production via ditch cleaning, on water resources and greenhouse gas (GHG) fluxes are unclear. To close the gap between science and management, we have developed a unique field research platform to experimentally evaluate key environmental strategies for drained northern landscapes with the aim to avoid further environmental degeneration. The Trollberget Experimental Area (TEA) includes replicated and controlled treatments applied at the catchment scale based on a BACI approach (before-after and control-impact). The treatments represent the dominant ecosystem types impacted by ditching in Sweden and the boreal zone: (1) rewetting of a drained peatland, (2) ditch cleaning in productive upland forests and (3) leaving these ditches unmanaged. Here we describe the TEA platform, report initial results, suggest ways forward for how to best manage this historical large-scale alteration of the boreal landscape, as well as warn against applying these treatments broadly before more long-term results are reported
The Kulbacksliden Research Infrastructure: a unique setting for northern peatland studies
Boreal peatlands represent a biogeochemically unique and diverse environment in high-latitude landscape. They represent a long-term globally significant sink for carbon dioxide and a source of methane, hence playing an important role in regulating the global climate. There is an increasing interest in deciphering peatland biogeochemical processes to improve our understanding of how anthropogenic and climate change effects regulate the peatland biogeochemistry and greenhouse gas balances. At present, most studies investigating land-atmosphere exchanges of peatland ecosystems are commonly based on single-tower setups, which require the assumption of homogeneous conditions during upscaling to the landscape. However, the spatial organization of peatland complexes might feature large heterogeneity due to its varying underlying topography and vegetation composition. Little is known about how well single site studies represent the spatial variations of biogeochemical processes across entire peatland complexes. The recently established Kulbacksliden Research Infrastructure (KRI) includes five peatland study sites located less than 3 km apart, thus providing a unique opportunity to explore the spatial variation in ecosystem-scale processes across a typical boreal peatland complex. All KRI sites are equipped with eddy covariance flux towers combined with installations for detailed monitoring of biotic and abiotic variables, as well as catchment-scale hydrology and hydrochemistry. Here, we review studies that were conducted in the Kulbacksliden area and provide a description of the site characteristics as well as the instrumentation available at the KRI. We highlight the value of long-term infrastructures with ecosystem-scale and replicated experimental sites to advance our understanding of peatland biogeochemistry, hydrology, ecology, and its feedbacks on the environment and climate system
The greenhouse gas balance of drained forest landscapes in boreal Sweden
Forest drainage has been extensively used to facilitate forest growth in Fennoscandinavia. However, its impact on the ecosystem carbon (C) and greenhouse gas (GHG) balances is limited, particularly in the large area of hemiboreal and boreal Sweden. This work quantified the effect of drainage on C and GHG fluxes in the northern forests under various geographical settings, soil conditions and drainage regimes. First, this thesis describes an investigation into the initial impacts of ditch cleaning (DC) on the C and GHG balances in two forest clear-cuts using closed chamber measurements. Second, the historical drainage impacts on C and GHG balance were evaluated using eddy covariance and stream discharge measurements for a drained peatland forest and an adjacent oligotrophic mire in boreal Sweden. Results show that DC did not increase CO2 emissions. Instead, annual CO2 emission decreased after DC at the dry and fertile clear-cut site, whereas an insignificant DC effect on CO2 flux was observed at the relatively wet and infertile clear-cut site. The net CO2 uptake was recorded as being greater in the drained peatland forest relative to the adjacent mire. An effect of DC and historical drainage on mitigating strong CH4 emission and potentially increasing CH4 uptake was observed. Ground vegetation growth was identified as a primary mediator of drainage effects on the C and GHG balance, but the interaction between ground vegetation growth and drainage depended on the site soil and hydrological conditions. Other carbon and greenhouse gas components, such as flux of nitrous oxide and loss of C through discharge, did not significantly respond to drainage activities. The conclusion is that forestry drainage activities, including DC and historical activities, do not intensify carbon and greenhouse gas emissions. This work provides novel insights which can support the development of sustainable and climate-friendly forest management strategies
Drainage Ditch Cleaning Has No Impact on the Carbon and Greenhouse Gas Balances in a Recent Forest Clear-Cut in Boreal Sweden
Ditch cleaning (DC) is increasingly applied to facilitate forest regeneration following clear-cutting in Fennoscandinavia. However, its impact on the ecosystem carbon and greenhouse gas (GHG) balances is poorly understood. We conducted chamber measurements to assess the initial DC effects on carbon dioxide (CO2) and methane (CH4) fluxes in a recent forest clear-cut on wet mineral soil in boreal Sweden. Measurements were conducted in two adjacent areas over two pre-treatments (2018/19) and two years (2020/21) after conducting DC in one area. We further assessed the spatial variation of fluxes at three distances (4, 20, 40 m) from ditches. We found that DC lowered the water table level by 12 ± 2 cm (mean ± standard error) and topsoil moisture by 0.12 ± 0.01 m3 m−3. DC had a limited initial effect on the net CO2 exchange and its component fluxes. CH4 emissions were low during the dry pre-treatment years but increased particularly in the control area during the wet years of 2020/21. Distance to ditch had no consistent effects on CO2 and CH4 fluxes. Model extrapolations suggest that annual carbon emissions decreased over the four years from 6.7 ± 1.4 to 1.6 ± 1.6 t-C ha−1 year−1, without treatment differences. Annual CH4 emissions contributed <2.5% to the carbon balance but constituted 39% of the GHG balance in the control area during 2021. Overall, our study suggests that DC modified the internal carbon cycling but without significant impact on the carbon and GHG balances
Drainage ditch cleaning has no impact on the carbon and greenhouse gas balances in a recent forest clear-cut in boreal Sweden
Ditch cleaning (DC) is increasingly applied to facilitate forest regeneration following clear-cutting in Fennoscandinavia. However, its impact on the ecosystem carbon and greenhouse gas (GHG) balances is poorly understood. We conducted chamber measurements to assess the initial DC effects on carbon dioxide (CO2) and methane (CH4) fluxes in a recent forest clear-cut on wet mineral soil in boreal Sweden. Measurements were conducted in two adjacent areas over two pre-treatments (2018/19) and two years (2020/21) after conducting DC in one area. We further assessed the spatial variation of fluxes at three distances (4, 20, 40 m) from ditches. We found that DC lowered the water table level by 12 ± 2 cm (mean ± standard error) and topsoil moisture by 0.12 ± 0.01 m3 m−3. DC had a limited initial effect on the net CO2 exchange and its component fluxes. CH4 emissions were low during the dry pre-treatment years but increased particularly in the control area during the wet years of 2020/21. Distance to ditch had no consistent effects on CO2 and CH4 fluxes. Model extrapolations suggest that annual carbon emissions decreased over the four years from 6.7 ± 1.4 to 1.6 ± 1.6 t-C ha−1 year−1, without treatment differences. Annual CH4 emissions contribute
Initial effects of post-harvest ditch cleaning on greenhouse gas fluxes in a hemiboreal peatland forest
Ditch cleaning (DC) is a well-established forestry practice across Fennoscandia to lower water table levels (WTL) and thereby facilitate the establishment of tree seedlings following clear-cutting. However, the implications from these activities for ecosystem-atmosphere greenhouse gas (GHG) exchanges are poorly understood at present. We assessed the initial DC effects on the GHG fluxes in a forest clear-cut on a drained fertile peatland in hemiboreal Sweden, by comparing chamber measurements of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) fluxes from soil and ditches in DC and uncleaned (UC) areas over the first two post-harvest years. We also evaluated spatial effects by comparing fluxes at 4 m and 40 m from ditches. We found that 2 years after DC, mean (+/- standard error) WTL of-65 +/- 2 cm was significantly lower in the DC area compared to-56 +/- 2 cm in the UC area. We further observed lower gross primary production and ecosystem respiration in the first year after DC which coincided with delayed development of herbaceous ground vegetation. We also found higher CH4 uptake but no difference in N2O fluxes after DC. Greater CH4 uptake occurred at 4 m compared to 40 m away from both cleaned and uncleaned ditches. Model extrapolation suggests that total annual GHG emissions in the second year were reduced from 49.4 +/- 17.0 t-CO2-eq-ha(-1) -year(-1) in the UC area to 27.8 +/- 10.3 t-CO2-eq-ha(-1) -year(-1) in the DC area. A flux partitioning approach suggested that this was likely caused by decreased heterotrophic respiration, possibly because of enhanced soil dryness following DC during the dry meteorological conditions. CH(4 )and N2O fluxes from clear-cut areas contributed < 2 % to the total (soil, ditches) GHG budget. Similarly the area -weighted contributions by CO2 and CH4 emissions from both cleaned and uncleaned ditches were < 2 %. Thus, our study highlights that DC may considerably alter the post-harvest GHG fluxes of drained peatland forests. However, long-term observations under various site conditions and forest rotation stages are warranted to better understand DC effects on the forest GHG balance
The Kulbäcksliden Research Infrastructure: a unique setting for northern peatland studies
Boreal peatlands represent a biogeochemically unique and diverse environment in high-latitude landscape. They represent a long-term globally significant sink for carbon dioxide and a source of methane, hence playing an important role in regulating the global climate. There is an increasing interest in deciphering peatland biogeochemical processes to improve our understanding of how anthropogenic and climate change effects regulate the peatland biogeochemistry and greenhouse gas balances. At present, most studies investigating land-atmosphere exchanges of peatland ecosystems are commonly based on single-tower setups, which require the assumption of homogeneous conditions during upscaling to the landscape. However, the spatial organization of peatland complexes might feature large heterogeneity due to its varying underlying topography and vegetation composition. Little is known about how well single site studies represent the spatial variations of biogeochemical processes across entire peatland complexes. The recently established Kulbäcksliden Research Infrastructure (KRI) includes five peatland study sites located less than 3 km apart, thus providing a unique opportunity to explore the spatial variation in ecosystem-scale processes across a typical boreal peatland complex. All KRI sites are equipped with eddy covariance flux towers combined with installations for detailed monitoring of biotic and abiotic variables, as well as catchment-scale hydrology and hydrochemistry. Here, we review studies that were conducted in the Kulbäcksliden area and provide a description of the site characteristics as well as the instrumentation available at the KRI. We highlight the value of long-term infrastructures with ecosystem-scale and replicated experimental sites to advance our understanding of peatland biogeochemistry, hydrology, ecology, and its feedbacks on the environment and climate system.ISSN:2296-646