393 research outputs found

    Using TPACK to examine teacher professional development for online and blended learning

    Get PDF
    Given the current rise of educational technology, more and more teachers are able to deliver their courses partially or fully online. This demands a new way of looking at teaching and learning, and raises many questions (e.g. how to become an online teacher). Therefore, many institutions and professionals try to meet such demands by offering professional development initiatives, aiming to provide teachers with new knowledge, skills, and attitudes towards teaching in an online setting. The technological, pedagogical, and content knowledge (TPACK) framework provides meaningful insights into teachers' necessary knowledge requirements for technology integration. Using the TPACK framework, this paper presents an overview and first analysis of the emphases placed by different teacher professional development approaches. This study will investigate the teacher professional development approaches of research articles by conducting a content analysis of each article, and by comparing the teacher professional development approaches. The analysis consists of sorting the textual data into different categories, and identifying different patterns and themes, which will be held against the TPACK framework. This is done for each individual study (within-case analysis) and between the studies (cross-case analysis). Furthermore, the initial results of this study will be discussed and the first recommendations for future research and practice will be formulated. Moreover, the results can be beneficial for practitioners involved in teacher professional development with regard to online and blended learning, to guide the design, development, implementation, and evaluation of a professional development approach. Therefore, the findings of this article can be of use to teachers, institutions, and professionals who wish to gain more insight into the current trends of existing professional development approaches, and provide them with a more thorough understanding of the initiatives that support teachers to become effective in online and blended learning. Further research could investigate if there is a link between the addressed TPACK elements in a teacher professional development approach and the retained results

    Indoor radon levels in relation to geology in southern Belgium

    Get PDF
    A statistical study of an indoor radon data set of about 1700 short-term measurements shows a striking relationship between indoor radon concentration and the geological factors, such as stratigraphic unit and rock type

    Axially symmetric Hartree-Fock-Bogoliubov Calculations for Nuclei Near the Drip-Lines

    Full text link
    Nuclei far from stability are studied by solving the Hartree-Fock-Bogoliubov (HFB) equations, which describe the self-consistent mean field theory with pairing interaction. Calculations for even-even nuclei are carried out on two-dimensional axially symmetric lattice, in coordinate space. The quasiparticle continuum wavefunctions are considered for energies up to 60 MeV. Nuclei near the drip lines have a strong coupling between weakly bound states and the particle continuum. This method gives a proper description of the ground state properties of such nuclei. High accuracy is achieved by representing the operators and wavefunctions using the technique of basis-splines. The detailed representation of the HFB equations in cylindrical coordinates is discussed. Calculations of observables for nuclei near the neutron drip line are presented to demonstrate the reliability of the method.Comment: 13 pages, 4 figures. Submitted to Physical Review C on 05/08/02. Revised on Dec/0

    Combinatorial nuclear level density by a Monte Carlo method

    Full text link
    We present a new combinatorial method for the calculation of the nuclear level density. It is based on a Monte Carlo technique, in order to avoid a direct counting procedure which is generally impracticable for high-A nuclei. The Monte Carlo simulation, making use of the Metropolis sampling scheme, allows a computationally fast estimate of the level density for many fermion systems in large shell model spaces. We emphasize the advantages of this Monte Carlo approach, particularly concerning the prediction of the spin and parity distributions of the excited states, and compare our results with those derived from a traditional combinatorial or a statistical method. Such a Monte Carlo technique seems very promising to determine accurate level densities in a large energy range for nuclear reaction calculations.Comment: 30 pages, LaTex, 7 figures (6 Postscript figures included). Fig. 6 upon request to the autho

    Saturation properties and incompressibility of nuclear matter: A consistent determination from nuclear masses

    Get PDF
    Starting with a two-body effective nucleon-nucleon interaction, it is shown that the infinite nuclear matter model of atomic nuclei is more appropriate than the conventional Bethe-Weizsacker like mass formulae to extract saturation properties of nuclear matter from nuclear masses. In particular, the saturation density thus obtained agrees with that of electron scattering data and the Hartree-Fock calculations. For the first time using nuclear mass formula, the radius constant r0r_0=1.138 fm and binding energy per nucleon ava_v = -16.11 MeV, corresponding to the infinite nuclear matter, are consistently obtained from the same source. An important offshoot of this study is the determination of nuclear matter incompressibility KK_{\infty} to be 288±\pm 28 MeV using the same source of nuclear masses as input.Comment: 14 latex pages, five figures available on request ( to appear in Phy. Rev. C

    Recent breakthroughs in Skyrme-Hartree-Fock-Bogoliubov mass formulas

    Full text link
    We review our recent achievements in the construction of microscopic mass tables based on the Hartree-Fock-Bogoliubov method with Skyrme effective interactions. In the latest of our series of HFB-mass models, we have obtained our best fit ever to essentially all the available mass data, by treating the pairing more realistically than in any of our earlier models. The rms deviation on the 2149 measured masses of nuclei with N and Z>8 has been reduced for the first time in a mean field approach to 0.581 MeV. With the additional constraint on the neutron-matter equation of state, this new force is thus very well-suited for the study of neutron-rich nuclei and for the description of astrophysical environments like supernova cores and neutron-star crusts.Comment: Proceedings of the Fifth International Conference on Exotic Nuclei and Atomic Masses, September 7-13 2008, Ryn (Poland). To appear in the European Physical Journal

    Scalar ground-state observables in the random phase approximation

    Get PDF
    We calculate the ground-state expectation value of scalar observables in the matrix formulation of the random phase approximation (RPA). Our expression, derived using the quasiboson approximation, is a straightforward generalization of the RPA correlation energy. We test the reliability of our expression by comparing against full diagonalization in 0 h-bar omega shell-model spaces. In general the RPA values are an improvement over mean-field (Hartree-Fock) results, but are not always consistent with shell-model results. We also consider exact symmetries broken in the mean-field state and whether or not they are restored in RPA.Comment: 7 pages, 3 figure
    corecore