29 research outputs found

    Leydig cell-immune cell interaction: an example of neuroendocrine-immune communication in testis

    Get PDF
    In her paper "Tilings will never be the same again" Dr Kathleen L. Wishner quoted Alvin Toffler's book Future Shock written in 1970. Toffler defined "future shock" as a time phenomenon, a product of the greatly accelerated change in society. The scientific research itself is a demonstration of this accelerated change. In particular, data systematized by Davidoff et al in this volume of Biomedical Reviews indicate the change in the understanding of the nature and origin of Leydig cells of the human testis.Biomedical Reviews 1996; 6: 1-4

    Nerve-mast cell-nerve growth factor link: the mast cell as yin-yang modulator in inflammation and fibrosis

    Get PDF
    Inflammation and fibroproliferation are biological responses aiming at recovering from injury. Wound healing is considered a paradigm of such a homeostatic phenomenon. However, what begins as a protective response, in excess becomes a damaging process we call chronic inflammatory-fibroproliferative disease.Biomedical Reviews 1995; 4: 1-6

    Neural-immune-effector (NIE) cross-talk in vascular trophobiology: proposal for new and not yet exploited purinergic regulatory mechanisms

    Get PDF
    In a state-of-the-art approach, Dr. Hasséssian presents purinoceptor-mediated vasoconstriction/vasodilation mechanisms of the pulmonary circulation. He focuses on P2 purinoceptors of smooth muscle cells, endothelial cells, platelets and mast cells, without addressing P1 (adenosine) purinoceptors. Recently, the Burnstock's purinoceptorology is "arborizing" into a variety of members of P1 and P2 purinoceptor families classified by the International Union of Pharmacology. Here we would like to add some possible, new and not yet exploited, purinergic regulatory mechanisms to the Hasséssian's work. Accordingly, we shall briefly focus on the involvement of connective tissue (adventitial) mast cells and their interactions with perivascular nerves and medial smooth muscle cells.Biomedical Reviews 1994; 3: 81-86

    A suggestive neurotrophic potential of mast cells in heart and submandibular glands of the rat

    Get PDF
    According to the neurotrophic theory, the nerve growth factor (NGF) is widely distributed in the effector tissues of peripheral sympathetic and sensory neurons, suggesting that the density of innervation is controlled by effector derived NGF. Sympathetic neurons require access to NGF for survival throughout life, whereas sensory neurons are dependent on NGF only during restricted period of embryonic development. This development-related feature of sympathetic neurons suggests that they crucially depend on plasticity of NGF biology, including secretion, availability, and utilization, to maintain appropriate neuronal function in adult life, and even in old age. While most previous studies on the cellular source of NGF have focused on neuronal and nonneuronal effector cells, it was recently demonstrated that NGF secretion is not only restricted to cells receiving a direct innervation. Immune cells, including mast cells (MC), lymphocytes and macrophages, for example, produce and release NGF as well as NGF secretion-inducing cytokines. Likewise, since the first evidence that NGF treatment causes a significant increase in the number and size of MC has been published by Aloe and Levi-Montalcini in 1977, it has been repeatedly shown that these cells are also NGF-responsive cells, thus providing further evidence for a widely investigated MC-nerve interaction. Further on this trophobiological line, a positive correlation of the amount of NGF and expression of NGF mRNA with the density of sympathetic innervation was demonstrated in a variety of organs. In the rat heart, one such example, the atrium contains a higher amount of NGF corresponding to a denser sympathetic nerve supply compared to the ventricle. Such a correlation was also revealed in the submandibular glands (SMG) and iris. Likewise, the density of MC in the ankle joint capsule, which is heavily innervated, is greater than in the capsule of the knee, which is less densely innervated, and the MC number in the synovial joint of spontaneously hypertensive rats, which have increased sympathetic nerve supply, is significantly greater than in normotensive rats. A summing-up of the above mentioned data shows that (i) MC are NGF secreting/responsive cells and frequently colocalized with nerves, and (ii) a higher NGF amount correlates with a denser sympathetic innervation of a tissue . This, in our eyes, brings into question the sole contribution of the "classical" effector cells to neurotrophic support of sympathetic nerve-innervated tissues. Consequently, we suggest that MC, through their own and/or cytokine-induced NGF secretion, may also be implicated in the neurotrophic potential in these tissues.Biomedical Reviews 1998; 9: 143-145

    Energy dependence of fission product yields from 235

    Full text link
    Under a joint collaboration between TUNL-LANL-LLNL, a set of absolute fission product yield measurements has been performed. The energy dependence of a number of cumulative fission product yields (FPY) have been measured using quasi-monoenergetic neutron beams for three actinide targets, 235U, 238U and 239Pu, between 0.5 and 14.8 MeV. The FPYs were measured by a combination of fission counting using specially designed dual-fission chambers and γ-ray counting. Each dual-fission chamber is a back-to-back ionization chamber encasing an activation target in the center with thin deposits of the same target isotope in each chamber. This method allows for the direct measurement of the total number of fissions in the activation target with no reference to the fission cross-section, thus reducing uncertainties. γ-ray counting of the activation target was performed on well-shielded HPGe detectors over a period of two months post irradiation to properly identify fission products. Reported are absolute cumulative fission product yields for incident neutron energies of 0.5, 1.37, 2.4, 3.6, 4.6, 5.5, 7.5, 8.9 and 14.8 MeV. Preliminary results from thermal irradiations at the MIT research reactor will also be presented and compared to present data and evaluations. This work was performed under the auspices of the U.S. Department of Energy by Los Alamos National Security, LLC under contract DE-AC52-06NA25396, Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344 and by Duke University and Triangle Universities Nuclear Laboratory through NNSA Stewardship Science Academic Alliance grant No. DE-FG52-09NA29465, DE-FG52-09NA29448 and Office of Nuclear Physics Grant No. DE-FG02-97ER41033

    The decay pattern of the Pygmy Dipole Resonance of ¹⁴⁰Ce

    Get PDF
    The decay properties of the Pygmy Dipole Resonance (PDR) have been investigated in the semi-magic N=82 nucleus ¹⁴⁰Ce using a novel combination of nuclear resonance fluorescence and γ–γcoincidence techniques. Branching ratios for transitions to low-lying excited states are determined in a direct and model-independent way both for individual excited states and for excitation energy intervals. Comparison of the experimental results to microscopic calculations in the quasi-particle phonon model exhibits an excellent agreement, supporting the observation that the Pygmy Dipole Resonance couples to the ground state as well as to low-lying excited states. A 10% mixing of the PDR and the [2+1×PDR]is extracted

    E1 and M1 strength functions at low energy

    Full text link
    We report photon-scattering experiments using bremsstrahlung at the γELBE facility of Helmholtz-Zentrum Dresden-Rossendorf and using quasi-monoenergetic, polarized γ beams at the HIγS facility of the Triangle Universities Nuclear Laboratory in Durham. To deduce the photoabsorption cross sections at high excitation energy and high level density, unresolved strength in the quasicontinuum of nuclear states has been taken into account. In the analysis of the spectra measured by using bremsstrahlung at γELBE, we perform simulations of statistical γ-ray cascades using the code γDEX to estimate intensities of inelastic transitions to low-lying excited states. Simulated average branching ratios are compared with model-independent branching ratios obtained from spectra measured by using monoenergetic γ beams at HIγS. E1 strength in the energy region of the pygmy dipole resonance is discussed in nuclei around mass 90 and in xenon isotopes. M1 strength in the region of the spin-flip resonance is also considered for xenon isotopes. The dipole strength function of 74Ge deduced from γELBE experiments is compared with the one obtained from experiments at the Oslo Cyclotron Laboratory. The low-energy upbend seen in the Oslo data is interpreted as M1 strength on the basis of shell-model calculations

    E1 and M1 strength functions at low energy

    No full text
    We report photon-scattering experiments using bremsstrahlung at the γELBE facility of Helmholtz-Zentrum Dresden-Rossendorf and using quasi-monoenergetic, polarized γ beams at the HIγS facility of the Triangle Universities Nuclear Laboratory in Durham. To deduce the photoabsorption cross sections at high excitation energy and high level density, unresolved strength in the quasicontinuum of nuclear states has been taken into account. In the analysis of the spectra measured by using bremsstrahlung at γELBE, we perform simulations of statistical γ-ray cascades using the code γDEX to estimate intensities of inelastic transitions to low-lying excited states. Simulated average branching ratios are compared with model-independent branching ratios obtained from spectra measured by using monoenergetic γ beams at HIγS. E1 strength in the energy region of the pygmy dipole resonance is discussed in nuclei around mass 90 and in xenon isotopes. M1 strength in the region of the spin-flip resonance is also considered for xenon isotopes. The dipole strength function of 74Ge deduced from γELBE experiments is compared with the one obtained from experiments at the Oslo Cyclotron Laboratory. The low-energy upbend seen in the Oslo data is interpreted as M1 strength on the basis of shell-model calculations

    E1 and M1 strength functions at low energy

    No full text
    We report photon-scattering experiments using bremsstrahlung at the γELBE facility of Helmholtz-Zentrum Dresden-Rossendorf and using quasi-monoenergetic, polarized γ beams at the HIγS facility of the Triangle Universities Nuclear Laboratory in Durham. To deduce the photoabsorption cross sections at high excitation energy and high level density, unresolved strength in the quasicontinuum of nuclear states has been taken into account. In the analysis of the spectra measured by using bremsstrahlung at γELBE, we perform simulations of statistical γ-ray cascades using the code γDEX to estimate intensities of inelastic transitions to low-lying excited states. Simulated average branching ratios are compared with model-independent branching ratios obtained from spectra measured by using monoenergetic γ beams at HIγS. E1 strength in the energy region of the pygmy dipole resonance is discussed in nuclei around mass 90 and in xenon isotopes. M1 strength in the region of the spin-flip resonance is also considered for xenon isotopes. The dipole strength function of 74Ge deduced from γELBE experiments is compared with the one obtained from experiments at the Oslo Cyclotron Laboratory. The low-energy upbend seen in the Oslo data is interpreted as M1 strength on the basis of shell-model calculations
    corecore