347 research outputs found

    Assessing the impact of observations on ocean forecasts and reanalyses: Part 2, Regional applications

    Get PDF
    The value of global (e.g., altimetry, satellite sea-surface temperature, Argo) and regional (e.g., radars, gliders, instrumented mammals, airborne profiles, biogeochemical) observation-types for monitoring the mesoscale ocean circulation and biogeochemistry is demonstrated using a suite of global and regional prediction systems and remotely-sensed data. A range of techniques is used to demonstrate the value of different observation-types to regional systems and the benefit of high- resolution and adaptive sampling for monitoring the mesoscale circulation. The techniques include Observing System Experiments, Observing System Simulation Experiments, adjoint sensitivities, representer matrix spectrum, observation footprints, information content and spectral analysis. It is shown that local errors in global and basin-scale systems can be significantly reduced when assimilating observations from regional observing systems

    GODAE systems in operation

    Get PDF
    During the last 15 years, operational oceanography systems have been developed in several countries around the world. These developments have been fostered primarily by the Global Ocean Data Assimilation Experiment (GODAE), which coordinated these activities, encouraged partnerships, and facilitated constructive competition. This multinational coordination has been very beneficial for the development of operational oceanography. Today, several systems provide routine, real-time ocean analysis, forecast, and reanalysis products. These systems are based on (1) state-of-the-art Ocean General Circulation Model (OGCM) configurations, either global or regional (basin-scale), with resolutions that range from coarse to eddy-resolving, and (2) data assimilation techniques ranging from analysis correction to advanced three- or four-dimensional variational schemes. These systems assimilate altimeter sea level anomalies, sea surface temperature data, and in situ profiles of temperature and salinity, including Argo data. Some systems have implemented downscaling capacities, which consist of embedding higher-resolution local systems in global and basin-scale models (through open boundary exchange of data), especially in coastal regions, where small scale-phenomena are important, and also increasing the spatial resolution for these regional/coastal systems to be able to resolve smaller scales (so-called downscaling). Others have implemented coupling with the atmosphere and/or sea ice. This paper provides a short review of these operational GODAE systems.Published76-914.6. Oceanografia operativa per la valutazione dei rischi in aree marineN/A or not JCRope

    GODAE systems in operation

    Get PDF
    During the last 15 years, operational oceanography systems have emerged in several countries around the world. This emergence has been largely fostered by the GODAE experiment, during which each nation engaged in this activity have organised partnership and constructive competition. This trans-national coordination was very beneficial for the development of operational oceanography, leading to economies of scales and more targeted actions. Today, several systems provide routine real-time ocean analysis and forecast and/or reanalysis products. They are all based on (i) state-of-the-art primitive equation baroclinic Ocean General Circulation Model (OGCM) configurations, either global or regional (basin-scale), with resolutions that range from coarse to eddy resolving and (ii) data assimilation techniques whose complexity ranges from simple analysis correction to advanced 4D variational schemes. They assimilate altimeter sea level anomalies, remotely sensed SST such as GHRSST products and in situ profiles of T and S, including ARGO. Some systems have implemented downscaling capacities in specific regions of interest including shelf/coastal seas. Some also have implemented coupling with the atmosphere and/or the prognostic sea ice in polar regions. They are the GODAE system in operation. They are reviewed in this paper. The GODAE system discussed here include: (1) BLUElink OceanMAPS, (2) C-NOOFS, , (3) ECCO, (4) FOAM, (5) HYCOM/NCODA, (6) MERCATOR, (7) MFS, (8) MOVE/MRI.COM, (9) NLOM/NCOM, (10) NMEFC, (11) RTOFS and (12) TOPAZ.SubmittedNice, France3.11. Oceanografia Operativaope

    GODAE systems in operation

    Get PDF
    During the last 15 years, operational oceanography systems have been developed in several countries around the world. These developments have been fostered primarily by the Global Ocean Data Assimilation Experiment (GODAE), which coordinated these activities, encouraged partnerships, and facilitated constructive competition. This multinational coordination has been very beneficial for the development of operational oceanography. Today, several systems provide routine, real-time ocean analysis, forecast, and reanalysis products. These systems are based on (1) state-of-the-art Ocean General Circulation Model (OGCM) configurations, either global or regional (basin-scale), with resolutions that range from coarse to eddy-resolving, and (2) data assimilation techniques ranging from analysis correction to advanced three- or four-dimensional variational schemes. These systems assimilate altimeter sea level anomalies, sea surface temperature data, and in situ profiles of temperature and salinity, including Argo data. Some systems have implemented downscaling capacities, which consist of embedding higher-resolution local systems in global and basin-scale models (through open boundary exchange of data), especially in coastal regions, where small scale-phenomena are important, and also increasing the spatial resolution for these regional/coastal systems to be able to resolve smaller scales (so-called downscaling). Others have implemented coupling with the atmosphere and/or sea ice. This paper provides a short review of these operational GODAE systems

    GODAE systems in operation

    Get PDF
    During the last 15 years, operational oceanography systems have emerged in several countries around the world. This emergence has been largely fostered by the GODAE experiment, during which each nation engaged in this activity have organised partnership and constructive competition. This trans-national coordination was very beneficial for the development of operational oceanography, leading to economies of scales and more targeted actions. Today, several systems provide routine real-time ocean analysis and forecast and/or reanalysis products. They are all based on (i) state-of-the-art primitive equation baroclinic Ocean General Circulation Model (OGCM) configurations, either global or regional (basin-scale), with resolutions that range from coarse to eddy resolving and (ii) data assimilation techniques whose complexity ranges from simple analysis correction to advanced 4D variational schemes. They assimilate altimeter sea level anomalies, remotely sensed SST such as GHRSST products and in situ profiles of T and S, including ARGO. Some systems have implemented downscaling capacities in specific regions of interest including shelf/coastal seas. Some also have implemented coupling with the atmosphere and/or the prognostic sea ice in polar regions. They are the GODAE system in operation. They are reviewed in this paper. The GODAE system discussed here include: (1) BLUElink OceanMAPS, (2) C-NOOFS, , (3) ECCO, (4) FOAM, (5) HYCOM/NCODA, (6) MERCATOR, (7) MFS, (8) MOVE/MRI.COM, (9) NLOM/NCOM, (10) NMEFC, (11) RTOFS and (12) TOPAZ

    Oil spillrisk in the Adriatic Sea: an example of operational support capability in aid to the management of the emergency.

    Get PDF
    The Turkish cargo ship “Und Adriyatik” took fire in the early morning of the 6th of February 2008 (see figure 1) due to unknown reasons, only some 13 miles offshore the coasts of Rovinj, in Northern Croatia. The ship was sailing from Istanbul to Trieste. Such an accident was a real threat to the Adriatic Sea, as the ship tanks were full of engine fuel and many trucks were on board: the risk of explosion was high at any time. At mid-morning of the same day, on behalf of the Slovenian Authorities the University of Port Rose (Slovenia) contacted the “Gruppo Nazionale di Oceanografia Operativa” of the “Istituto Nazionale di Geofisica e Vulcanologia” (GNOO-INGV) to get information on the hypothetical dispersion and fate of the oil in case of spillage from the ship. From several years, GNOO-INGV is running a daily marine forecast system of the Mediterranean Sea (MFS) and of a nested higher resolution Adriatic Sea Forecasting Systeml (AFS) with an off-line coupled oil spill model (Medslik). INGV receives atmospheric forecast from the Ufficio Generale Spazio Aereo e Meteorologia (USAM) of the Italian Air Force and it is establishing an agreement with REMPEC (Regional Marine Pollution Emergency Response Centre for Mediterranean Sea) to help for management of oil spill emergencies

    Status and future of global and regional ocean prediction systems

    Get PDF
    Operational evolution of global and regional ocean forecasting systems has been extremely significant in recent years. GODAE (Global Ocean Data Assimilation Experiment) Oceanview supports the national research groups providing them with coordination and sharing expertise among the partners. Several systems have been set up and developed pre-operationally and the majority of these are now fully operational; at the present time, they provide medium- and long-term forecasts of the most relevant ocean physical variables. These systems are based on ocean general circulation models (OGCMs) and data assimilation techniques that are able to correct the model with the information inferred from different types of observations. A few systems also incorporate a biogeochemical component coupled with the physical system while others are based on coupled ocean-wave-ice-atmosphere models. The products are routinely validated with observations in order to assess their quality. Data and products implementation and organization, as well as service for the users has been well tried and tested and most of the products are now available  to the users. The interaction with different users is an important factor in the development process. This paper provides a synthetic overview of the GODAE Oceanview prediction systems

    Status and future of global and regional ocean prediction systems

    Get PDF
    Operational evolution of global and regional ocean forecasting systems has been extremely significant in recent years. GODAE (Global Ocean Data Assimilation Experiment) Oceanview supports the national research groups providing them with coordination and sharing expertise among the partners. Several systems have been set up and developed pre-operationally and the majority of these are now fully operational; at the present time, they provide medium- and long-term forecasts of the most relevant ocean physical variables. These systems are based on ocean general circulation models (OGCMs) and data assimilation techniques that are able to correct the model with the information inferred from different types of observations. A few systems also incorporate a biogeochemical component coupled with the physical system while others are based on coupled ocean-wave-ice-atmosphere models. The products are routinely validated with observations in order to assess their quality. Data and products implementation and organization, as well as service for the users has been well tried and tested and most of the products are now available  to the users. The interaction with different users is an important factor in the development process. This paper provides a synthetic overview of the GODAE Oceanview prediction systems.Publisheds201-s2204A. Clima e OceaniJCR Journalope

    Mapeamento do fluxo de trabalho das atividades em engenharia clínica: a experiência do Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo

    Get PDF
    The incorporation of medical devices and other technological resources with high aggregate value increases the challenges to achieve an efficient and quality management by Health Organizations. In this context, the use of tools to support the management becomes essential for the efficient use health resources in order to achieve greater stability and sustainability of the system as a whole. Thus, this study aimed to develop a mapping workflow of activities in the Clinical Engineering sector, responsible for managing medical diagnostic equipment at HCFMRP-USP, exposed in flow chart form, aiming later incorporation and spread among other hospital departments.A incorporação de equipamentos médicos hospitalares e outros recursos tecnológicos com alto valor agregado aumentam os desafios para realizar uma gestão eficiente e de qualidade pelas Organizações de Saúde. Nesse contexto, a utilização de ferramentas de apoio a gestão se torna essencial para o aproveitamento racional dos recursos de saúde, de forma a alcançar maior estabilidade e sustentabilidade do sistema como um todo. Assim, o presente trabalho teve como finalidade elaborar um mapeamento do fluxo de trabalho das atividades desenvolvidas no setor de Engenharia Clínica, responsável pela gestão de equipamentos médico diagnósticos do HCFMRP-USP, exposto na forma de fluxograma, objetivando posteriormente, sua incorporação e propagação dentre outros setores do hospital
    corecore