6 research outputs found

    MONITORING LUBRICANT PERFORMANCE IN FIELD APPLICATION

    Get PDF
    Sažetak Praćenje radnih svojstava maziva u primjeni ima viÅ”estruki značaj i za korisnika i za proizvođača maziva. Za korisnika je to prvenstveno produljena i pravodobna izmjena maziva, čineći tako troÅ”kove održavanja nižim. Za proizvođača maziva predstavlja stvaranje partnerskih odnosa s potroÅ”ačem, ali i mogućnost prikupljanja informacija o ponaÅ”anju vlastitih proizvoda kao podloge za daljnje unapređenje i razvoj proizvoda. Rad prikazuje neke od rezultata praćenja radnih svojstava maziva u primjeni dobivenih u laboratorijima Maziva ZagrebAbstract Monitoring the performance of lubricants in practical application has multiple significance for both the consumer and the lubricant manufacturer. The primary significance for the consumer is extended life and timely change of lubricants, which keeps the costs of maintenance down. The lubricant manufacturer gains by creating a partner relationship with the consumer, as well as creating the possibility of gathering information about the performance of his product which will serve as the foundation for the further improvement and development of his product. The following paper presents the results of monitoring lubricant performance in field application obtained at the laboratories of Maziva Zagreb

    The Digiphyslab Project: Digital physics laboratory work for on-campus and distance learning

    Get PDF
    EXPERIMENTAL WORK AND COVID-19 With the emergence of the COVID-19 in spring 2020, physics teaching at university level needed to be rapidly transformed into a distance learning mode all around the world. While lectures and tutorials could rather easily be substituted with video conferences, self-study materials, or recorded videos, transforming a hands-on laboratory course into distance learning is much more challenging facing its traditional structures, manifold learning objectives, and the essential use of typical laboratory equipment (Hut et al., 2020; Jelicic et al., 2022; Werth et al., 2021).Ā  DIGITAL TECHNOLOGIES AS A PROMISING APPROACH A promising approach to develop laboratory courses especially, and to offer these courses in a distance learning mode, is to use digital technologies like smartphones. Smartphones are widely used, often cheaper than traditional equipment and allow convenient data collection and analysis by utilising built-in sensors. Thus, smartphones provide an affordable opportunity to conduct experiments beyond the laboratory. Additionally, they can enhance inquiry-based learning processes due to the reduction of studentsā€™ extraneous cognitive load (Becker et al., 2020). THE DIGIPHYSLAB-PROJECT The DigiPhysLab-project (Lahme et al., in press), co-funded by the European Union, follows this approach of utilising digital technologies like smartphones for physics experiments by developing 15 high-quality, competence-centered experimental tasks that can therefore be implemented either in on-campus or distance learning settings. All developed tasks are linked to a theoretical framework for design principles of experimental tasks and evaluated with students at the participating universities. The task instructions and further materials are published as open educational resources on the project website (www.jyu.fi/digiphyslab). In the presentation, the framework, the tasks, and the evaluation scheme are presented, and the usability of the tasks is discussed. REFERENCES Becker, S., Klein, P., GĆ¶ĆŸling, A., & Kuhn, J. (2020). Using mobile devices to enhance inquiry-based learning processes. Learning and Instruction, 69, 101350. Hut,Ā R.Ā W., Pols,Ā C.Ā F.Ā J., & Verschuur,Ā D.Ā J. (2020). Teaching a hands-on course during corona lockdown: from problems to opportunities. Physics Education, 55(6), 065022. Jelicic, K., Geyer, M. A., Ivanjek, L., Klein, P., KĆ¼chemann, S., Dahlkemper, M. N., & Susac, A. (2022). Lab courses for prospective physics teachers: what could we learn from the first COVID-19 lockdown? What could we learn from the first COVID-19 lockdown? European Journal of Physics, 43(5), 55701. Lahme, S. Z., Klein, P., Lehtinen, A., MĆ¼ller, A., Pirinen, P., Susac, A., & Tomrlin, B. (in press). DigiPhysLab: Digital Physics Laboratory Work for Distance Learning. PhyDid B - Didaktik der Physik - BeitrƤge zur DPG-FrĆ¼hjahrstagung - online 2022. Werth,Ā A., Hoehn,Ā J.Ā R., Oliver,Ā K., Fox,Ā M.Ā F.Ā J., & Lewandowski,Ā H.Ā J. (2021). Rapid Transition to Remote Instruction of Physics Labs During Spring 2020: Instructor Perspectives. arXiv. https://doi.org/10.48550/arXiv.2112.1225

    Nuclear decay process simulation

    No full text
    Iako je nuklearni raspad statistički proces, opisujemo ga jednostavnim jednakostima koje govore o najvjerojatnijim vrijednostima vremenskih prosjeka fizičkih veličina. Ovakav opis često odmaže u razumijevanju koncepta statističkih procesa Å”to je slučaj i kod nuklearnih raspada. U diplomskom radu student bi napravio simulaciju raspada sustava N radioaktivnih čestica i pokuÅ”ao odgovoriti na niz konceptualnih pitanja kao Å”to su: Je li definirano vrijeme poluživota za jednu česticu?, Kako se odnose prosječno vrijeme između dva raspada i prosječno vrijeme od nasumičnog trena do idućeg raspada? itd., direktno pomoću simulacije. Simulacija bi bila opremljena jednostavnim grafičkim prikazom raspada, kao i sadržavala niz pitanja na koja bi korisnik pokuÅ”ao odgovoriti.Although nuclear decay is a statistical process, we can describe it with simple equations that tell us the most probable values of the time averages of physical quantities. Such a description often makes it more difficult to understand the concept of statistical processes, which is the case with nuclear decay. In the thesis, the student would make a simulation of the decay of a system consisting of N radioactive particles and try to answer a number of conceptual questions such as: Is the half life defined for a single particle?, How do the average time between two decays and the average time from a random moment to the next correlate? etc., directly with simulation. The simulation would be equipped with a simple graphical representation of the decay, as well as contain a series of questions that the user would try to answer

    Nuclear decay process simulation

    No full text
    Iako je nuklearni raspad statistički proces, opisujemo ga jednostavnim jednakostima koje govore o najvjerojatnijim vrijednostima vremenskih prosjeka fizičkih veličina. Ovakav opis često odmaže u razumijevanju koncepta statističkih procesa Å”to je slučaj i kod nuklearnih raspada. U diplomskom radu student bi napravio simulaciju raspada sustava N radioaktivnih čestica i pokuÅ”ao odgovoriti na niz konceptualnih pitanja kao Å”to su: Je li definirano vrijeme poluživota za jednu česticu?, Kako se odnose prosječno vrijeme između dva raspada i prosječno vrijeme od nasumičnog trena do idućeg raspada? itd., direktno pomoću simulacije. Simulacija bi bila opremljena jednostavnim grafičkim prikazom raspada, kao i sadržavala niz pitanja na koja bi korisnik pokuÅ”ao odgovoriti.Although nuclear decay is a statistical process, we can describe it with simple equations that tell us the most probable values of the time averages of physical quantities. Such a description often makes it more difficult to understand the concept of statistical processes, which is the case with nuclear decay. In the thesis, the student would make a simulation of the decay of a system consisting of N radioactive particles and try to answer a number of conceptual questions such as: Is the half life defined for a single particle?, How do the average time between two decays and the average time from a random moment to the next correlate? etc., directly with simulation. The simulation would be equipped with a simple graphical representation of the decay, as well as contain a series of questions that the user would try to answer

    Nuclear decay process simulation

    No full text
    Iako je nuklearni raspad statistički proces, opisujemo ga jednostavnim jednakostima koje govore o najvjerojatnijim vrijednostima vremenskih prosjeka fizičkih veličina. Ovakav opis često odmaže u razumijevanju koncepta statističkih procesa Å”to je slučaj i kod nuklearnih raspada. U diplomskom radu student bi napravio simulaciju raspada sustava N radioaktivnih čestica i pokuÅ”ao odgovoriti na niz konceptualnih pitanja kao Å”to su: Je li definirano vrijeme poluživota za jednu česticu?, Kako se odnose prosječno vrijeme između dva raspada i prosječno vrijeme od nasumičnog trena do idućeg raspada? itd., direktno pomoću simulacije. Simulacija bi bila opremljena jednostavnim grafičkim prikazom raspada, kao i sadržavala niz pitanja na koja bi korisnik pokuÅ”ao odgovoriti.Although nuclear decay is a statistical process, we can describe it with simple equations that tell us the most probable values of the time averages of physical quantities. Such a description often makes it more difficult to understand the concept of statistical processes, which is the case with nuclear decay. In the thesis, the student would make a simulation of the decay of a system consisting of N radioactive particles and try to answer a number of conceptual questions such as: Is the half life defined for a single particle?, How do the average time between two decays and the average time from a random moment to the next correlate? etc., directly with simulation. The simulation would be equipped with a simple graphical representation of the decay, as well as contain a series of questions that the user would try to answer

    DigiPhysLab : Digital Physics Laboratory Work for Distance Learning

    No full text
    Pursuing a broad range of learning objectives, effective physics laboratory courses need conducive-to-learning, motivating, and engaging experimental tasks. The Covid-19 pandemic has further increased the demand for quality experimental tasks which can also be used in online learning scenarios. The EU-funded DigiPhysLab-project meets this need by developing a set of 15 competence-centred experimental tasks which can be implemented by instructors effortlessly in their own lab courses, independent of whether they are held on-campus or in distance learning. For this, the project utilizes the broad availability of digital technologies like smartphones which allow an inexpensive data collection and analysis also outside a traditional laboratory. The developed tasks are characterized by a framework for design principles of experimental tasks derived from literature. In this conference proceedings, the general rationale and outline of the DigiPhysLab-project are described and exemplified by an experiment that is already developed, i.e., the Slamming Door experiment.peerReviewe
    corecore